[1] XU S, HAO L, AN X, et al. Review on emerging research topics with key-route main path analysis[J]. Scientometrics, 2020, 122(1):607-624.
[2] 杨金庆, 魏雨晗, 黄圣智, 等. 基于科技文献的新兴主题识别研究综述[J]. 情报科学, 2020, 38(8):159-163, 177.
[3] 刘小玲, 谭宗颖. 新兴技术主题识别方法研究进展[J]. 图书情报工作, 2020, 64(11):145-152.
[4] 钟辉新. 新兴趋势探测研究综述[J]. 现代情报, 2017, 37(12):162-167.
[5] 卢超, 侯海燕, DING Y, 等. 国外新兴研究话题发现研究综述[J]. 情报学报, 2019, 38(1):97-110.
[6] 张仪. 形式概念分析与普通逻辑中的概念[D]. 镇江:江苏科技大学, 2017.
[7] 柴成鱼. 社会科学中的概念问题研究[D]. 太原:山西大学, 2010.
[8] MATSUMUR N, MATSUO Y, OHSAWA Y, et al. Discovering emerging topics from WWW[J]. Journal of contingencies and crisis management, 2002, 10(2):73-81.
[9] GLANZEL W, THIJS B. Using 'core documents' for detecting and labelling new emerging topics[J]. Scientometrics, 2012, 91(2):399-416.
[10] SMALL H, BOYACK K W, KLAVANS R. Identifying emerging topics in science and technology[J]. Research policy, 2014, 43(8):1450-1467.
[11] 唐月强. 基于文献的新兴主题识别研究[D]. 北京:北京工业大学, 2015.
[12] WANG Q. A bibliometric model for identifying emerging research topics[J]. Journal of the Association for Information Science and Technology, 2018, 69(2):290-304.
[13] 许海云, 王超, 岳增慧, 等. 基于知识网络强弱关系变迁测度新兴主题的未来不确定性[J]. 情报理论与实践, 2021, 44(11):89-98.
[14] TU Y, SENG J. Indices of novelty for emerging topic detection[J]. Information processing & management, 2012, 48(2):303-325.
[15] 徐路路, 王效岳, 白如江, 等. 基于DTM模型和文本特征分析的基金项目新兴趋势探测研究——以NSF石墨烯领域为例[J]. 数据分析与知识发现, 2018, 2(3):87-97.
[16] XU H, WINNINK J, YUE Z, et al. Multidimensional scientometric indicators for the detection of emerging research topics[J]. Technological forecasting and social change, 2021, 163:120490.
[17] YANG J, LU W, HU J, et al. A novel emerging topic detection method:a knowledge ecology perspective[J]. Information processing and management, 2022, 59(2):102843.
[18] XU S, HAO L Y, AN X, et al. Emerging research topics detection with multiple machine learning models[J]. Journal of informetrics, 2019, 13(4):100983.
[19] 杨金庆, 肖兵, 程秀峰, 等. 基于HDP过程模型与学术会议的学科新兴主题发现研究——以"人工智能"领域为例[J]. 情报理论与实践, 2019, 42(4):117-122.
[20] XU M, LI G, WANG X. Detecting emerging topics by exploiting probability burst and association rule mining:a case study of library and information science[J]. Malaysian journal of library & information science, 2020, 25(1):47-66.
[21] 白敬毅, 颜端武, 陈琼. 基于主题模型和曲线拟合的新兴主题趋势预测研究[J]. 情报理论与实践, 2020, 43(7):130-136, 193.
[22] HUANG L, CHEN X, NI X, et al. Tracking the dynamics of coword networks for emerging topic identification[J]. Technological forecasting and social change, 2021, 170:120944.
[23] LIANG Z, MAO J, LU K, et al. Combining deep neural network and bibliometric indicator for emerging research topic prediction[J]. Information processing and management, 2021, 58(5):102611.
[23] YANG J, LU W, HU J, et al. A novel emerging topic detection method:a knowledge ecology perspective[J]. Information processing and management, 2022, 59(2):102843.
[24] PORTER A L, GARNER J, CARLEY S F, et al. Emergence scoring to identify frontier R&D topics and key players[J]. Technological forecasting and social change, 2019, 146:628-643.
[25] MUND C, NEUHAUSLER P. Towards an early-stage identification of emerging topics in science-the usability of bibliometric characteristics[J]. Journal of informetrics, 2015, 9(4):1018-1033.
[26] KWON S, YOUTIE J, PORTER A L. Interdisciplinary knowledge combinations and emerging technological topics:implications for reducing uncertainties in research evaluation[J]. Research evaluation, 2020, 30(1):127-140.
[27] 段庆锋, 潘小换. 利用社交媒体识别学科新兴主题研究[J]. 情报学报, 2017, 36(12):1216-1223.
[28] 宋欣娜, 郭颖, 席笑文. 基于专利文献的多指标新兴技术识别研究[J]. 情报杂志, 2020, 39(6):76-81, 88.
[29] 徐路路, 靳杨. 基于FSD模型的政府资助项目新兴主题探测与分析[J]. 科学学与科学技术管理, 2019, 40(2):40-54.
[30] 唐恒, 邱悦文. 多源信息视角下的多指标新兴技术主题识别研究——以智能网联汽车领域为例[J]. 情报杂志, 2021, 40(3):81-88.
[31] 范云满, 马建霞. 基于LDA与新兴主题特征分析的新兴主题探测研究[J]. 情报学报, 2014, 33(7):698-711.
[32] 叶光辉, 王灿灿, 李松烨. 基于SciTS会议文本的跨学科科研协作新兴主题识别及预测[J]. 情报科学, 2022, 40(7):126- 135.
[33] ZHANG S, HAN F. Identifying emerging topics in a technological domain[J]. Journal of intelligent & fuzzy systems applications in engineering, 2016, 31(4):2147-2157.
[34] 黄璐, 朱一鹤, 张嶷. 基于加权网络链路预测的新兴技术主题识别研究[J]. 情报学报, 2019, 38(4):335-341.
[35] 陈稳, 陈伟. 基于计量指标多变量LSTM模型的新兴主题热度预测研究[J]. 数据分析与知识发现, 2022, 6(10):35-45.
[36] CHOI H, WOO J. Investigating emerging hydrogen technology topics and comparing national level technological focus:patent analysis using a structural topic model[J]. Applied energy, 2022, 313:118898.
[37] GONZALEZ-ALCAIDE G, LLORENTE P, RAMOS J. Bibliometric indicators to identify emerging research fields:publications on mass gatherings[J]. Scientometrics, 2016, 109(2):1283-1298.
[38] 黄鲁成, 张璐, 吴菲菲, 等. 基于突现文献和SAO相似度的新兴主题识别研究[J]. 科学学研究, 2016, 34(6):814-821.
[39] MEJIA C, KAJIKAWA Y. Emerging topics in energy storage based on a large-scale analysis of academic articles and patents[J]. Applied energy, 2020, 263:114625.
[40] 葛菲, 谭宗颖. 学科领域主题新兴趋势探测方法研究——基于关键词生命周期和引文分析[J]. 情报理论与实践, 2013, 36(9):78-82.
[41] OHNIWA R L, HIBINO A. Generating process of emerging topics in the life sciences[J]. Scientometrics, 2019, 121(3):1549- 1561.
[42] 刘自强, 胡正银, 许海云, 等. 基于PWLR模型的领域新兴趋势识别及其可视化研究[J]. 情报学报, 2020, 39(9):979-988.
[43] SASAKI H, FUGETSU B, SAKATA I. Emerging scientific field detection using citation networks and topic models-a case study of the nanocarbon field[J]. Applied system innovation, 2020, 3(3):1-17.
[44] 黄鲁成, 唐月强, 吴菲菲, 等. 基于文献多属性测度的新兴主题识别方法研究[J]. 科学学与科学技术管理, 2015, 36(2):34- 43.
[45] 俞立平, 张再杰, 肖成华. "以刊评文"的局限、本质及其辩证应用研究[J]. 情报杂志, 2021, 40(3):201-207.
[46] ROCHE I, BESAGNI D, FRANOIS C, et al. Identification and characterisation of technological topics in the field of Molecular Biology[J]. Scientometrics, 2010, 82(3):663-676.
[47] GONZALEZ-ALCAIDE G, GORRAIZ J, HERVAS-OLIVER J. On the use of bibliometric indicators for the analysis of emerging topics and their evolution:spin-offs as a case study[J]. Profesional de la informacion, 2018, 27(3):493-510.
[48] 卢超, 章成志, 王玉琢, 等. 语义特征分析的深化——学术文献的全文计量分析研究综述[J]. 中国图书馆学报, 2021, 47(2):110-131.
[49] HU Z, ZENG R, PENG L, et al. Discovering emerging research topics based on SPO predications[C]//14th international conference on knowledge management in organizations (KMO)-synergistic role of knowledge management in organization. Berlin:Springer, 2019, 1027:110-121.
[50] 徐路路, 王效岳, 白如江. 基于PLDA模型与多数据源融合相关性分析的新兴主题探测研究——以石墨烯领域为例[J]. 情报理论与实践, 2018, 41(4):63-69, 43.
[51] 段庆锋, 闫绪娴, 陈红, 等. 基于媒介比较的学科新兴主题动态识别-altmetrics与引文数据的融合方法[J]. 情报学报, 2022, 41(9):930-944.
[52] 牌艳欣, 李长玲, 刘运梅. 基于z指数的AAS高关注度学科研究主题识别[J]. 情报资料工作, 2019, 40(6):30-37.
[53] 段庆锋, 陈红, 刘东霞, 等. 基于LSTM模型与加权链路预测的学科新兴主题成长性识别研究[J]. 现代情报, 2022, 42(9):37-48, 142.
[54] 王鹏飞, 刘烜贞. 基于内容分析的Altmetrics本质研究[J]. 图书情报工作, 2017, 61(2):114-120.
[55] ROTOLO D, HICKS D, MARTIN B. What is an emerging technology?[J]. Research policy, 2015, 44(10):1827-1843.
[56] 郝雯柯, 杨建林. 基于语义表示和动态主题模型的社科领域新兴主题预测研究[J/OL]. 情报理论与实践:1-15[2022-10-16]. https://kns.cnki.net/kcms/detail/11.1762.G3.20220907.1612.002.html.
[57] XU S, HAO L, YANG G, et al. A topic models based framework for detecting and forecasting emerging technologies[J]. Technological forecasting & social change, 2021, 162:120366.
[58] ZHOU Y, DONG F, LIU Y, et al. A deep learning framework to early identify emerging technologies in large-scale outlier patents:an empirical study of CNC machine tool[J]. Scientometrics, 2021, 126(2):969-994.
[59] 许海云, 张慧玲, 武华维, 等. 新兴研究主题在演化路径上的关键时间点研究[J]. 图书情报工作, 2021, 65(8):51-64.
[60] CARLEY S F, NEWMAN N C, PORTER A L, et al. A measure of staying power:Is the persistence of emergent concepts more significantly influenced by technical domain or scale?[J]. Scientometrics, 2017, 111(3):2077-2087.
[61] 李静, 徐路路, 赵素君. 基于时间序列分析和SVM模型的基金项目新兴主题趋势预测与可视化研究[J]. 情报理论与实践, 2019, 42(1):118-123, 152.