THEORETICAL STUDY

How Data for Good is Possible in the Digital Ecology: Origins, Elements, Drivers and Dilemmas

  • Chu Jiewang ,
  • Li Jiaxuan
Expand
  • School of Management, Anhui University, Hefei 230601

Received date: 2022-10-24

  Revised date: 2023-01-09

  Online published: 2023-06-01

Abstract

[Purpose/Significance] To explore the essential connotation and boundary of data goodness and to explore the driving factors of its realization, to help China’s digital ecology realize the normalization of data goodness development. [Method/Process] This paper explored the intrinsic elements and scope of data goodness through theoretical tracing and defined its essential concept, then analyzed the driving factors of data subjects’ adoption of data goodness using the ISM model, and finally analyzed the dilemma and future of data goodness. [Result/Conclusion] The paper found that the motivations that drive data subjects to adopt data for good can be divided into core, indirect and surface motivations, and choosing the right driver is the key to achieving data for good. In the future, if we want to popularise data for good at a societal level, we need to start from a number of dimensions such as regulations, laws and market environment.

Cite this article

Chu Jiewang , Li Jiaxuan . How Data for Good is Possible in the Digital Ecology: Origins, Elements, Drivers and Dilemmas[J]. Library and Information Service, 2023 , 67(10) : 3 -14 . DOI: 10.13266/j.issn.0252-3116.2023.10.001

References

[1] 胡贝贝, 王胜光, 段玉厂. 互联网引发的新技术-经济范式解析[J]. 科学学研究, 2019, 37(4):582-589.
[2] 金骋路, 陈荣达. 数据要素价值化及其衍生的金融属性:形成逻辑与未来挑战[J]. 数量经济技术经济研究, 2022, 39(7):69-89.
[3] 徐宏潇. 习近平关于发展数字经济重要论述的创新性贡献[J]. 马克思主义理论学科研究, 2022, 8(8):39-49.
[4] 潘越, 谢玉湘, 宁博, 等. 数智赋能、法治化营商环境建设与商业信用融资——来自"智慧法院" 视角的经验证据[J]. 管理世界, 2022, 38(9):194-208.
[5] 高培勇, 樊丽明, 洪银兴, 等. 深入学习贯彻习近平总书记重要讲话精神加快构建中国特色经济学体系[J]. 管理世界, 2022, 38(6):1-56.
[6] 林晓玥, 王天东, 生帆, 等. 企业数据向善:概念、测量与展望[J]. 科学学研究, 2022, 40(11):2019-2026.
[7] 陈至立. 辞海[M]. 7版. 上海:上海辞书出版社, 2021.
[8] DE VRIES G J. "Book-review" Plato's moral theory:the early and middle dialogues[J]. Mnemosyne, 1980, 33(1):3-4.
[9] 康德. 纯粹理性批判[M]. 李秋零, 译. 北京:中国人民大学出版商, 2004.
[10] 麦金太尔, 白锡堃. 《在德行之后》一书的观点[J]. 国外社会科学, 1985(2):63-65.
[11] SETHI S P. Dimensions of corporate social performance:an analytical framework[J]. California management review, 1975, 17(3):58-64.
[12] MITCHELL R K, AGLE B R, WOOD D J. Toward a theory of stakeholder identification and salience:defining the principle of who and what counts[J]. Academy of management review, 1997, 22(4):853-886.
[13] PAINE L S. Managing for organizational integrity[J]. Harvard business review, 1994, 72(2):106-117.
[14] WAHYUDI A, PEKKOLA S, JANSSEN M. Representational quality challenges of big data:insights from comparative case studies[C]//Conference on e-business, e-services and e-society. Cham:Springer, 2018, 11195:520-538.
[15] GRANT C. Friedman fallacies[J]. Journal of business ethics, 1991, 10(12):907-914.
[16] 王晰巍, 王楠阿雪. 数智驱动的重大突发事件应急情报管理:新机遇、新挑战、新趋势[J]. 图书情报工作, 2022, 66(16):4-12.
[17] 王晰巍, 毕樱瑛, 李玥琪. 社交网络中意见领袖节点影响力指数模型及实证研究——以自然灾害"7·20" 河南暴雨为例[J]. 图书情报工作, 2022, 66(16):24-35.
[18] CHANDY R, HASSAN M, MUKHERJI P. Big data for good:insights from emerging markets[J]. Journal of product innovation management, 2017, 34(5):703-713.
[19] ALEMANNO A. Data for good:unlocking privately-held data to the benefit of the many[J]. Working papers, 2018, 9(2):183-191.
[20] MENG M M, LEI J S. Corporate technology for social good under the collectivism:connotation and enlightenment[J]. Science and technology progress and policy, 2021, 38(7):76-84.
[21] HUMMEL P BRAUN M, TRETTER M, et al. Data sovereignty:a review[J]. Big data & society, 2021, 8(1):2053951720982012.
[22] 卜学民. 论数据本地化模式的反思与制度构建[J]. 情报理论与实践, 2021, 44(12):80-87, 79.
[23] CAMPOS J, SHARMA P, GABIRIA U G, et al. A big data analytical architecture for the asset management[J]. Procedia CIRP, 2017, 64:369-374.
[24] PANDZA K, ELLWOOD P. Strategic and ethical foundations for responsible innovation[J]. Research policy, 2013, 42(5):1112-1125.
[25] 侯人华, 徐少同. 美国政府开放数据的管理和利用分析——以www.data.gov为例[J]. 图书情报工作, 2011, 55(4):119- 122, 142.
[26] 李德国, 蔡晶晶. 作为公共管理的治理理论[J]. 理论与现代化, 2004(5):54-58, 63.
[27] 陈宏辉, 贾生华. 企业社会责任观的演进与发展:基于综合性社会契约的理解[J]. 中国工业经济, 2003(12):85-92.
[28] 贾生华, 陈宏辉. 利益相关者的界定方法述评[J]. 外国经济与管理, 2002(5):13-18.
[29] 刘业政, 孙见山, 姜元春, 等. 大数据的价值发现:4C模型[J]. 管理世界, 2020, 36(2):129-138+223.
[30] LU X, BENGTSSON L, HOLME P. Predictability of population displacement after the 2010 Haiti earthquake[J]. Proceedings of the National Academy of Sciences, 2012, 109(29):11576-11581.
[31] 司晓马, 永武. 共生:科技与社会驱动的数字化未来[M]. 浙江:浙江大学出版社, 2021.
[32] 韩正彪, 周鹏. 扎根理论质性研究方法在情报学研究中的应用[J]. 情报理论与实践, 2011, 34(5):19-23.
[33] 尹洪英, 徐丽群, 权小锋. 基于解释结构模型的路网脆弱性影响因素分析[J]. 软科学, 2010, 24(10):122-126.
[34] 卢黎歌, 李婷. 我国数据要素统一大市场构建目标、存在问题与对策分析[J]. 理论探讨, 2022(5):163-167.
[35] 蔡跃洲. 中国共产党领导的科技创新治理及其数字化转型——数据驱动的新型举国体制构建完善视角[J]. 管理世界, 2021, 37(8):30-46.
[36] 中信院. 数据价值化与数据要素市场发展报告(2021)[EB/OL].[2022-10-21]. https://www.smartcity.team/reports/.
Outlines

/