[1] 魏娟,李敏.信息过载影响消费者决策研究的知识图谱分析[J].管理现代化, 2022, 42(1):156-161.
[2] 丁晓东.基于信任的自动化决策:算法解释权的原理反思与制度重构[J].中国法学, 2022(1):99-118.
[3] 喻国明学术工作室,杨雅,陈雪娇,等.类脑、具身与共情:如何研究人工智能对于传播学与后人类的影响——基于国际三大刊Science、Nature和PNAS人工智能相关议题的分析[J].学术界, 2021(8):108-117.
[4] 彭燕林.个性化推荐中的"过滤气泡"现象相关研究综述[J].科技创业月刊, 2019, 32(4):135-139.
[5] 国家互联网信息办公室.解读《互联网信息服务算法推荐管理规定》[EB/OL].[2023-01-26]. http://www.gov.cn/zhengce/2022-01/04/content_5666428.htm.
[6] GROSHEK J, KOC-MICHALSKA K. Helping populism win?social media use, filter bubbles, and support for populist presidential candidates in the 2016 US election campaign[J]. Information, communication & society, 2017, 20(9):1389-1407.
[7] 蔡立媛,张金海."媒介涵化受众"与"受众涵化媒介":大数据环境下网络涵化模式的重构[J].出版广角, 2015(6):88-91.
[8] 吕巍,杨颖,张雁冰. AI个性化推荐下消费者感知个性化对其点击意愿的影响[J].管理科学, 2020, 33(5):44-57.
[9] 耿立校,晋高杰,李亚函,等.基于改进内容过滤算法的高校图书馆文献资源个性化推荐研究[J].图书情报工作, 2018, 62(21):112-117.
[10] 汤文兵.基于深度学习的Top-N个性化推荐技术研究与应用[D].上海:东华大学, 2021.
[11] HE X, DENG K, WANG X, et al. LightGCN:simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval. New York:Association for Computing Machinery, 2020:639-648.
[12] 武慧娟,孙鸿飞,金永昌.社会化标注系统中个性化信息推荐多维度融合与优化模型研究[J].现代情报, 2019, 39(1):37-42, 85.
[13] 段尧清,刘宇明,蔡诗茜,等.数字图书馆个性化推荐用户信息采纳行为影响研究——信息采纳意向的中介效应[J].现代情报, 2019, 39(2):85-93.
[14] 席运江,郭黛翎,廖晓,等.基于改进RFM模型的直播平台用户细分及个性化推荐方法研究[J].竞争情报, 2022, 18(3):36-47.
[15] 杨雨娇,袁勤俭.个性化推荐的隐忧:基于扎根理论的信息茧房及其前因后果探析[J].情报理论与实践, 2023, 46(3):117-126.
[16] STRAUSS S. Datafication and the seductive power of uncertainty-a critical exploration of big data enthusiasm[J]. Information, 2015, 6(4):836-847.
[17] 李伶俐.繁荣表象下的隐忧:短视频对青少年的负面影响及应对策略[J].中共云南省委党校学报, 2020, 21(3):133-138.
[18] 五成受访者会选择关闭算法推荐何去何从?[EB/OL].[2023-01-26]. https://baijiahao.baidu.com/s?id=1728309291819627518&wfr=spider&for=pc.
[19] 万立良,蒲坤.微信视频号用户持续使用意愿的影响因素探究[J].情报探索, 2022(3):10-18.
[20] ANDERSON A, HUTTENLOCHER D, KLEINBERG J, et al. Engaging with massive online courses[C]//Proceedings of the 23rd international conference on World Wide Web. New York:Association for Computing Machinery, 2014:687-698.
[21] 赵保国,姚瑶.用户持续使用知识付费APP意愿的影响因素研究[J].图书馆学研究, 2017(17):96-101.
[22] DAVIS F. Perceived usefulness, perceived ease of use, and user acceptance of information technology[J]. MIS quarterly, 1989, 13(3):319-340.
[23] 熊强,李文元,陈晓燕,等.在线教学平台交互性、体验价值和持续使用意愿的关系研究——一个有调节的中介效应[J].管理评论, 2022, 34(6):153-161.
[24] WOODWORTH R S. Dynamic psychology[J]. The pedagogical seminary and journal of genetic psychology, 1926, 33(1):103-118.
[25] 周涛,刘佳怡,邓胜利.基于SOR模型的在线知识社区用户潜水行为研究[J].情报杂志, 2022, 41(7):160-165, 83.
[26] 王文韬,张震,张坤,等.融合SOR理论的智能健康手环用户不持续使用行为研究[J].图书馆论坛, 2020, 40(5):92-102.
[27] LEE S K, MIN S R. Effects of information quality of online travel agencies on trust and continuous usage intention:an application of the SOR model[J]. The journal of Asian finance, economics and business, 2021, 8(4):971-982.
[28] 陈明红,潘子璇,曾庆彬.政务微信用户持续使用行为及用户契合的调节作用研究[J].现代情报, 2020, 40(11):85-98.
[29] JOHNSON J D, MEISCHKE H. A comprehensive model of cancer-related information seeking applied to magazines[J]. Human communication research, 1993, 19(3):343-367.
[30] MARKUS H, ZAJONC R. The cognitive perspective in social psychology[J]. Handbook of social psychology, 1985, 1(1):137-230.
[31] CHO J, SHAH D, MCLEOD J, et al. Campaigns, reflection, and deliberation:advancing an OSROR model of communication effects[J]. Communication theory, 2009, 19(1):66-88.
[32] DELONE W, MCLEAN E. The DeLone and McLean model of information systems success:a ten-year update[J]. Journal of management information systems, 2003, 19(4):9-30.
[33] 范波,李金曈,白天,等.基于混合机器学习优化的协同过滤算法[J].湖南理工学院学报(自然科学版), 2021, 34(3):9-12.
[34] 李玉.基于深度确定性策略梯度算法的信任推荐研究[D].烟台:烟台大学, 2022.
[35] 王志远,王兴芬.基于用户兴趣差异改进矩阵填充的个性化推荐算法[J].计算机应用与软件, 2020, 37(12):224-230, 237.
[36] CAHILL S, BANDURA A. Social foundations of thought and action:a social cognitive theory[J]. Contemporary sociology a journal of reviews, 1987, 16(1):12.
[37] BRIDGES E, FLORSHEIM R. Hedonic and utilitarian shopping goals:the online experience[J]. Journal of business research, 2007, 61(4):309-314.
[38] LEE Y, CHEN A, HESS T. The online waiting experience:using temporal information and distractors to make online waits feel shorter[J]. Journal of the Association for Information Systems, 2017, 18(3):231-263.
[39] PELET J, ETTIS S, COWART K. Optimal experience of flow enhanced by telepresence:evidence from social media use[J]. Information & management, 2017, 54(1):115-128.
[40] 张玥,李青宇.基于PPM理论的网络用户信息茧房滞留意愿影响因素研究[J].现代情报, 2022, 42(4):52-61
[41] 薛杨,许正良.微信营销环境下用户信息行为影响因素分析与模型构建——基于沉浸理论的视角[J].情报理论与实践, 2016, 39(6):104-109.
[42] BANDURA A. Social foundations of thought and action[M].Englewood Cliffs:Prentice Halll, 1986:23-28.
[43] 王畅.信息焦虑量表的编制研究[D].长春:吉林大学, 2010.
[44] 刘国亮,张汇川,刘子嘉.移动社交媒体用户不持续使用意愿研究——整合错失焦虑与社交媒体倦怠双重视角[J].情报科学, 2020, 38(12):128-133.
[45] 袁顺波.社会化阅读用户流失意愿实证研究[J].浙江学刊, 2022(2):99-110.
[46] 包家帅.基于S-O-R模型的新浪微博用户倦怠研究[D].大连:大连理工大学, 2020.
[47] OZKARA B, OZMEN M, KIM J. Examining the effect of flow experience on online purchase:a novel approach to the flow theory based on hedonic and utilitarian value[J]. Journal of retailing and consumer services, 2017, 37:119-131.
[48] 李慧.不良推荐对用户持续使用电商平台影响研究[D].青岛:山东科技大学, 2020.
[49] 林渊渊.互联网信息冗余现象[J].当代传播, 2004(5):58-60.
[50] 陈琼,宋士杰,赵宇翔.突发公共卫生事件中信息过载对用户信息规避行为的影响:基于COVID-19信息疫情的实证研究[J].情报资料工作, 2020, 41(3):76-88.
[51] CURRAN S, SAGUY A. Migration and cultural change:a role for gender and social networks?[J]. Journal of international women's studies, 2001, 2(3):54-77.
[52] LIN H. Determinants of successful virtual communities:contributions from system characteristics and social factors[J]. Information & management, 2008, 45(8):522-527.
[53] SÁNCHEZ-FRANCO M, ROLDÁN J. Web acceptance and usage model:a comparison between goal-directed and experiential web users[J]. Internet research, 2005, 15(1):21-48.
[54] 李曼静.学术虚拟社区用户持续使用意愿研究[D].武汉:华中师范大学, 2015.
[55] 丁晓燕.社会化商务情境下品牌转换意愿的影响机理研究[D].济南:山东财经大学, 2018.
[56] KUMMER T F, RECKER J, BICK M. Technology-induced anxiety:manifestations, cultural influences, and its effect on the adoption of sensor-based technology in German and Australian hospitals[J]. Information & management, 2017, 54(1):73-89.
[57] RAVINDRAN T, YEOW KUAN A C, HOE LIAN D G. Antecedents and effects of social network fatigue[J]. Journal of the Association for Information Science and Technology, 2014, 65(11):2306-2320.
[58] BRIGHT L, KLEISER S, GRAU S. Too much Facebook?an exploratory examination of social media fatigue[J]. Computers in human behavior, 2015, 44:148-155.
[59] 张肖,王文韬,谢阳群,等.量化自我场域下个人健康信息组织实证与优化——以智能手环为例[J].现代情报, 2021, 41(10):21-29, 39.
[60] JEONG J K. A systematic comparison of time use instruments:time diary and experience sampling method[J]. Survey research, 2008, 9(1):43-68.
[61] 查道林,蒋智慧,曹高辉.信息系统用户感知算法焦虑的内涵及其结构维度研究[J].情报科学, 2022, 40(6):66-73.
[62] 查先进,张晋朝,严亚兰.微博环境下用户学术信息搜寻行为影响因素研究——信息质量和信源可信度双路径视角[J].中国图书馆学报, 2015, 41(3):71-86.
[63] KARR-WISNIEWSKI P, LU Y. When more is too much:operationalizing technology overload and exploring its impact on knowledge worker productivity[J]. Computers in human behavior, 2010, 26(5):1061-1072.
[64] 汪雅倩.焦虑视角下强关系社交媒体不持续使用研究——以微信朋友圈为例[J].新闻界, 2019(10):81-91.
[65] SKADBERG Y X, KIMMEL J R. Visitors'flow experience while browsing a website:its measurement, contributing factors and consequences[J]. Computers in human behavior, 2004, 20(3):403-422.
[66] 赵启南.关系性压力下青年使用者社交媒体倦怠影响及其行为结果[J].新闻与传播研究, 2019, 26(6):59-75, 127.
[67] 王哲.社会化问答社区知乎的用户持续使用行为影响因素研究[J].情报科学, 2017, 35(1):78-83, 143.
[68] 朱庆华,徐孝婷,赵宇翔,等.基于移动经验取样法的量化自我参与流程及内在机理研究[J].情报学报, 2022, 41(3):217-228.
[69] 苏斌原,李江雪,叶婷婷,等.青少年网络成瘾治疗研究的新进展[J].广州大学学报(社会科学版), 2014, 13(12):23-29.
[70] KUSS D, GRIFFITHS M. Internet gaming addiction:a systematic review of empirical research[J]. International journal of mental health and addiction, 2012, 10(2):278-296.
[71] KO C, YEN J, CHEN C, et.al. Gender differences and related factors affecting online gaming addiction among Taiwanese adolescents[J]. The journal of nervous and mental disease, 2014, 193(4):273-277.