INFORMATION RESEARCH

Identification of Disruptive Technology Topics Based on LDA2Vec and DTM Models: A Case Study in the Energy Technology Field

  • Lü Kun ,
  • Xiang Minhao ,
  • Jing Jipeng
Expand
  • 1 Business School, Ningbo University, Ningbo 315211;
    2 School of Business and Management, Jilin University, Changchun 130022

Received date: 2022-12-26

  Revised date: 2023-03-22

  Online published: 2023-07-06

Abstract

[Purpose/Significance] Disruptive technology is crucial to a country’s competitiveness and international status. Accurately identifying the topics of disruptive technology can effectively address the problems of unclear themes and development paths in the process of technology development. This can provide a better grasp of the dynamics of technology development, adjust the layout of national science and technology strategies, and better seize the international competitive high ground. [Method/Process] This study used patent text data in the field of energy technology as the research object, constructed a fusion feature vector based on Word2Vec word vectors and LDA topic vectors, and introduced the K-means algorithm to optimize the topic clustering effect. Finally, combining with the characteristic indicators of disruptive technology, the disruptive technology topics were identified, and the DTM model was used to reveal the development status of disruptive technology topics in this field. [Result/Conclusion] Through manual verification and comparison with model results, the empirical results are reasonable. The precision, recall, and F1 values of the model are higher than those of similar topic models, which proves that this method is effective in identifying disruptive technology topics.

Cite this article

Lü Kun , Xiang Minhao , Jing Jipeng . Identification of Disruptive Technology Topics Based on LDA2Vec and DTM Models: A Case Study in the Energy Technology Field[J]. Library and Information Service, 2023 , 67(12) : 89 -102 . DOI: 10.13266/j.issn.0252-3116.2023.12.009

References

[1] HOOD L, FLORES M. A personal view on systems medicine and the emergence of proactive P4 medicine:predictive, preventive, personalized and participatory[J]. New biotechnology, 2012, 29(6):613-624.
[2] SIVARAMAN S, TRIVEDI M M. Looking at vehicles on the road:a survey of vision-based vehicle detection, tracking, and behavior analysis[J]. IEEE transactions on intelligent transportation systems, 2013, 14(4):1773-1795.
[3] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Physics, 2014, 86(1):153-185.
[4] SCHMIDTHUBER L, MARESCH D, GINNER M, et al. Disruptive technologies and abundance in the service sectortoward a refined technology acceptance model[J]. Technological forecasting and social change, 2020, 155:119328.
[5] NAGY D, SCHUESSLER J, DUBINSKY A, et al. Defining and identifying disruptive innovations[J]. Industrial marketing management, 2016, 57:119-126.
[6] CHRISTENSEN C M. The innovator's dilemma:when new technologies cause great firms to fail[M]. Boston:Harvard Business School Press, 1997.
[7] 刘秋艳,吴新年.国内外颠覆性技术发现方法研究综述[J].图书情报工作, 2017, 61(7):127-136.
[8] 苏成,赵志耘,赵筱媛,等.颠覆性技术新阐释:概念、内涵及特征[J].情报学报, 2021, 40(12):1253-1262.
[9] 苏鹏,苏成,潘云涛.颠覆性技术识别方法发展现状及启示[J].图书情报工作, 2019, 63(20):129-138.
[10] 李乾瑞,郭俊芳,黄颖,等.基于突变-融合视角的颠覆性技术主题演化研究[J].科学学研究, 2021, 39(12):2129-2139.
[11] 程如烟,孙浩林.主要经济体支持颠覆性技术创新的政策措施研究[J].情报学报, 2021, 40(12):1263-1270.
[12] 纪亚琨,余翔,张奔,等.专利网络视角下的潜在颠覆性技术识别——以自动驾驶领域为例[J].情报杂志, 2022, 41(12):46-50, 139.
[13] AALDERING L J, SONG C H. Tracing the technological development trajectory in post-lithium-ion battery technologies:a patent-based approach[J]. Journal of cleaner production, 2019, 241:118343.
[14] CURRAN C S, LEKER J. Patent indicators for monitoring convergence-examples from NFF and ICT[J]. Technological forecasting&social change, 2011, 78(2):256-273.
[15] ENKEL E, GASSMANN O. Creative imitation:exploring the case of cross-industry innovation[J]. R&D management:research and development management, 2010, 40(3):256-270.
[16] DECK M J. The innovator's solution:creating and sustaining successful growth[J]. Journal of product innovation management, 2010, 22(2):213-215.
[17] KELLER F, GUNASEKHARAN S, MAYO N, et al. Timing accuracy of web experiments:a case study using the WebExp software package[J]. Behavior research methods, 2009, 41(4):1-12.
[18] 张金柱,张晓林.利用引用科学知识突变识别突破性创新[J].情报学报, 2014, 33(3):259-266.
[19] 刘忠宝,康嘉琦,张静.基于主题突变检测的颠覆性技术识别——以无人机技术领域为例[J].科技导报, 2020, 38(20):97-105.
[20] 白光祖,刘安蓉,曹晓阳,等.工程科技领域潜在颠覆性技术发现方法研究与实证[J].情报杂志, 2022, 41(11):33-40.
[21] 白光祖,郑玉荣,吴新年,等.基于文献知识关联的颠覆性技术预见方法研究与实证[J].情报杂志, 2017, 36(9):38-44.
[22] 王安,孙棕檀,沈艳,等.国外颠覆性技术识别方法浅析[J].中国工程科学, 2017, 19(5):79-84.
[23] 卢光松,卢平.技术路线图与颠覆性技术创新[J].科技进步与对策, 2011, 28(3):11-15.
[24] VOJAK B A, CHAMBERS F A. Roadmapping disruptive technical threats and opportunities in complex, technologybased subsystems:the SAILS methodology[J]. Technological forecasting and social change, 2004, 71(1-2):121-139.
[25] MOMENI A, ROST K. Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling[J]. Technological forecasting and social change, 2016, 104:16-29.
[26] DOTSIKA F, WATKINS A. Identifying potentially disruptive trends by means of keyword network analysis[J]. Technological forecasting and social change, 2017, 119:114-127.
[27] 吕鲲,项旻昊,邱佳烨.颠覆性技术的价值评价体系构建及实证研究——基于AHP和熵权法[J].中国科技论坛, 2023(2):30-38.
[28] 李晓龙,鲁平,李存斌.基于Delphi和DEMATEL法影响国网的颠覆性创新技术影响因素综合排序分析[J].科技管理研究, 2017, 37(6):127-133.
[29] 但智钢,史菲菲,王志增,等.中国环境工程科技2035技术预见研究[J].中国工程科学, 2017, 19(1):80-86.
[30] 张欣.颠覆性技术识别方法述评[J].图书情报工作, 2020, 64(17):145-152.
[31] 单晓红,韩晟熙,刘晓燕.基于技术主题演化的颠覆性技术识别研究[J/OL].情报理论与实践[2023-05-09]. http://kns.cnki.net/kcms/detail/11.1762.g3.20230313.1515.004.html.
[32] 霍朝光,卢小宾,杨冠灿,等.数据驱动的产业技术情报分析方法体系框架构建[J].图书情报知识, 2022, 39(1):73-83.
[33] BLEI D M, NG A Y, JORDAN, M I. Latent dirichlet allocation[J]. Journal of machine Learning research, 2003, 3:993-1022.
[34] LI X, XIE Q, DAIM T, et al. Forecasting technology trends using text mining of the gaps between science and technology:the case of perovskite solar cell technology[J]. Technological forecasting and social change, 2019, 22(3):78-85.
[35] 马永红,孔令凯,林超然,等.基于异构数据的颠覆性技术识别研究——以智能制造装备领域为例[J].现代情报, 2022, 42(7):92-104.
[36] WANG X, MCCALLUM A. Topics over time:a non-markov continuous-time model of topical trends[C]//Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2006:424-433.
[37] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint, arXiv:1301.3781, 2013.
[38] MOODY C. Mixing dirichlet topic models and word embeddings to make LDA2Vec[J]. arXiv preprint, arXiv:1605.02019, 2016.
[39] DIENG A B, RUIZ F, BLEI D M. Topic modeling in embedding spaces[J]. Transactions of the Association for Computational Linguistics, 2020, 8(2):439-453.
[40] WANG X Y, ZHANG Y, WANG X L, et al. A knowledge graph enhanced topic modeling approach for herb recommendation[C]//International conference on database systems for advanced applications. Berlin:Springer, 2019:709-724.
[41] ZHAO K, DING H, YE K, et al. A transformer-based hierarchical variational autoencoder combined hidden markov model for long text generation[J]. Entropy, 2021, 23(10):1277.
[42] YANG L, CAI X, PAN S, et al. Multi-document summarization based on sentence cluster using non-negative matrix factorization[J]. Journal of intelligent&fuzzy systems, 2017, 33(3):1867-1879.
[43] 王秀红,高敏.基于BERT-LDA的关键技术识别方法及其实证研究——以农业机器人为例[J].图书情报工作, 2021, 65(22):114-125.
[44] 苏鹏,苏成,潘云涛.基于历史案例的颠覆性技术特征分析[J].中国科技论坛, 2019(8):1-9.
[45] 黄鲁成,蒋林杉,吴菲菲.萌芽期颠覆性技术识别研究[J].科技进步与对策, 2019, 36(1):10-17.
[46] 王海军,于佳文.基于专利发展路径的颠覆性技术识别:以智能语音领域为例[J].科技管理研究, 2022, 42(6):170-181.
[47] 周萌,朱相丽.新兴技术概念辨析及其识别方法研究进展[J].情报理论与实践, 2019, 42(10):162-169.
[48] JIA W, WANG S, XIE Y, et al. Disruptive technology identification of intelligent logistics robots in AIoT industry:based on attributes and functions analysis[J]. Systems research and behavioral science, 2022, 39(3):557-568.
[49] 谭晓,西桂权,苏娜,等.科学-技术-项目联动视角下颠覆性技术识别研究[J].情报杂志, 2023, 42(2):82-91.
[50] 冯倩倩,张光宇,戴海闻,等.颠覆性技术遴选的指标体系与流程设计——基于扎根理论的多案例研究[J].科技管理研究, 2021, 41(24):50-59.
[51] ILEANA M. The influence of disruptive technologies in the field of defense[J]. Land forces academy review, 2021, 26(4):288-292.
[52] 韩芳,张生太,冯凌子,等.基于专利文献技术融合测度的突破性创新主题识别——以太阳能光伏领域为例[J].数据分析与知识发现, 2021, 5(12):137-147.
[53] 李静,徐路路,赵素君.基于时间序列分析和SVM模型的基金项目新兴主题趋势预测与可视化研究[J].情报理论与实践, 2019, 42(1):118-123, 152.
[54] 张博,郭丹凝,彭苏萍.中国工程科技能源领域2035发展趋势与战略对策研究[J].中国工程科学, 2017, 19(1):64-72.
[55] 王效岳,赵冬晓,白如江.基于专利文本数据挖掘的技术预测方法与实证研究——以纳米技术在能源领域应用为例[J].情报理论与实践, 2017, 40(4):106-110.
[56] 赵蓉英,戴祎璠,王旭.基于LDA模型与ATM模型的学者影响力评价研究——以我国核物理学科为例[J].情报科学, 2019, 37(6):3-9.
[57] 陈伟,林超然,李金秋,等.基于LDA-HMM的专利技术主题演化趋势分析——以船用柴油机技术为例[J].情报学报, 2018, 37(7):732-741.
[58] 王康,高继平,潘云涛,等.多位态研究主题识别及其演化路径方法研究[J].图书情报工作, 2021, 65(11):113-122.
[59] 廖芃鑫,马晓娟,闻杰.预警指标集构建路径研究——以印巴冲突为例[J].情报杂志, 2021, 40(4):82-91.
[60] 刘晓豫,朱东华,汪雪锋,等.多专长专家识别方法研究——以大数据领域为例[J].图书情报工作, 2018, 62(3):55-63.
Outlines

/