[1] HOOD L, FLORES M. A personal view on systems medicine and the emergence of proactive P4 medicine:predictive, preventive, personalized and participatory[J]. New biotechnology, 2012, 29(6):613-624.
[2] SIVARAMAN S, TRIVEDI M M. Looking at vehicles on the road:a survey of vision-based vehicle detection, tracking, and behavior analysis[J]. IEEE transactions on intelligent transportation systems, 2013, 14(4):1773-1795.
[3] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Physics, 2014, 86(1):153-185.
[4] SCHMIDTHUBER L, MARESCH D, GINNER M, et al. Disruptive technologies and abundance in the service sectortoward a refined technology acceptance model[J]. Technological forecasting and social change, 2020, 155:119328.
[5] NAGY D, SCHUESSLER J, DUBINSKY A, et al. Defining and identifying disruptive innovations[J]. Industrial marketing management, 2016, 57:119-126.
[6] CHRISTENSEN C M. The innovator's dilemma:when new technologies cause great firms to fail[M]. Boston:Harvard Business School Press, 1997.
[7] 刘秋艳,吴新年.国内外颠覆性技术发现方法研究综述[J].图书情报工作, 2017, 61(7):127-136.
[8] 苏成,赵志耘,赵筱媛,等.颠覆性技术新阐释:概念、内涵及特征[J].情报学报, 2021, 40(12):1253-1262.
[9] 苏鹏,苏成,潘云涛.颠覆性技术识别方法发展现状及启示[J].图书情报工作, 2019, 63(20):129-138.
[10] 李乾瑞,郭俊芳,黄颖,等.基于突变-融合视角的颠覆性技术主题演化研究[J].科学学研究, 2021, 39(12):2129-2139.
[11] 程如烟,孙浩林.主要经济体支持颠覆性技术创新的政策措施研究[J].情报学报, 2021, 40(12):1263-1270.
[12] 纪亚琨,余翔,张奔,等.专利网络视角下的潜在颠覆性技术识别——以自动驾驶领域为例[J].情报杂志, 2022, 41(12):46-50, 139.
[13] AALDERING L J, SONG C H. Tracing the technological development trajectory in post-lithium-ion battery technologies:a patent-based approach[J]. Journal of cleaner production, 2019, 241:118343.
[14] CURRAN C S, LEKER J. Patent indicators for monitoring convergence-examples from NFF and ICT[J]. Technological forecasting&social change, 2011, 78(2):256-273.
[15] ENKEL E, GASSMANN O. Creative imitation:exploring the case of cross-industry innovation[J]. R&D management:research and development management, 2010, 40(3):256-270.
[16] DECK M J. The innovator's solution:creating and sustaining successful growth[J]. Journal of product innovation management, 2010, 22(2):213-215.
[17] KELLER F, GUNASEKHARAN S, MAYO N, et al. Timing accuracy of web experiments:a case study using the WebExp software package[J]. Behavior research methods, 2009, 41(4):1-12.
[18] 张金柱,张晓林.利用引用科学知识突变识别突破性创新[J].情报学报, 2014, 33(3):259-266.
[19] 刘忠宝,康嘉琦,张静.基于主题突变检测的颠覆性技术识别——以无人机技术领域为例[J].科技导报, 2020, 38(20):97-105.
[20] 白光祖,刘安蓉,曹晓阳,等.工程科技领域潜在颠覆性技术发现方法研究与实证[J].情报杂志, 2022, 41(11):33-40.
[21] 白光祖,郑玉荣,吴新年,等.基于文献知识关联的颠覆性技术预见方法研究与实证[J].情报杂志, 2017, 36(9):38-44.
[22] 王安,孙棕檀,沈艳,等.国外颠覆性技术识别方法浅析[J].中国工程科学, 2017, 19(5):79-84.
[23] 卢光松,卢平.技术路线图与颠覆性技术创新[J].科技进步与对策, 2011, 28(3):11-15.
[24] VOJAK B A, CHAMBERS F A. Roadmapping disruptive technical threats and opportunities in complex, technologybased subsystems:the SAILS methodology[J]. Technological forecasting and social change, 2004, 71(1-2):121-139.
[25] MOMENI A, ROST K. Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling[J]. Technological forecasting and social change, 2016, 104:16-29.
[26] DOTSIKA F, WATKINS A. Identifying potentially disruptive trends by means of keyword network analysis[J]. Technological forecasting and social change, 2017, 119:114-127.
[27] 吕鲲,项旻昊,邱佳烨.颠覆性技术的价值评价体系构建及实证研究——基于AHP和熵权法[J].中国科技论坛, 2023(2):30-38.
[28] 李晓龙,鲁平,李存斌.基于Delphi和DEMATEL法影响国网的颠覆性创新技术影响因素综合排序分析[J].科技管理研究, 2017, 37(6):127-133.
[29] 但智钢,史菲菲,王志增,等.中国环境工程科技2035技术预见研究[J].中国工程科学, 2017, 19(1):80-86.
[30] 张欣.颠覆性技术识别方法述评[J].图书情报工作, 2020, 64(17):145-152.
[31] 单晓红,韩晟熙,刘晓燕.基于技术主题演化的颠覆性技术识别研究[J/OL].情报理论与实践[2023-05-09]. http://kns.cnki.net/kcms/detail/11.1762.g3.20230313.1515.004.html.
[32] 霍朝光,卢小宾,杨冠灿,等.数据驱动的产业技术情报分析方法体系框架构建[J].图书情报知识, 2022, 39(1):73-83.
[33] BLEI D M, NG A Y, JORDAN, M I. Latent dirichlet allocation[J]. Journal of machine Learning research, 2003, 3:993-1022.
[34] LI X, XIE Q, DAIM T, et al. Forecasting technology trends using text mining of the gaps between science and technology:the case of perovskite solar cell technology[J]. Technological forecasting and social change, 2019, 22(3):78-85.
[35] 马永红,孔令凯,林超然,等.基于异构数据的颠覆性技术识别研究——以智能制造装备领域为例[J].现代情报, 2022, 42(7):92-104.
[36] WANG X, MCCALLUM A. Topics over time:a non-markov continuous-time model of topical trends[C]//Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2006:424-433.
[37] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint, arXiv:1301.3781, 2013.
[38] MOODY C. Mixing dirichlet topic models and word embeddings to make LDA2Vec[J]. arXiv preprint, arXiv:1605.02019, 2016.
[39] DIENG A B, RUIZ F, BLEI D M. Topic modeling in embedding spaces[J]. Transactions of the Association for Computational Linguistics, 2020, 8(2):439-453.
[40] WANG X Y, ZHANG Y, WANG X L, et al. A knowledge graph enhanced topic modeling approach for herb recommendation[C]//International conference on database systems for advanced applications. Berlin:Springer, 2019:709-724.
[41] ZHAO K, DING H, YE K, et al. A transformer-based hierarchical variational autoencoder combined hidden markov model for long text generation[J]. Entropy, 2021, 23(10):1277.
[42] YANG L, CAI X, PAN S, et al. Multi-document summarization based on sentence cluster using non-negative matrix factorization[J]. Journal of intelligent&fuzzy systems, 2017, 33(3):1867-1879.
[43] 王秀红,高敏.基于BERT-LDA的关键技术识别方法及其实证研究——以农业机器人为例[J].图书情报工作, 2021, 65(22):114-125.
[44] 苏鹏,苏成,潘云涛.基于历史案例的颠覆性技术特征分析[J].中国科技论坛, 2019(8):1-9.
[45] 黄鲁成,蒋林杉,吴菲菲.萌芽期颠覆性技术识别研究[J].科技进步与对策, 2019, 36(1):10-17.
[46] 王海军,于佳文.基于专利发展路径的颠覆性技术识别:以智能语音领域为例[J].科技管理研究, 2022, 42(6):170-181.
[47] 周萌,朱相丽.新兴技术概念辨析及其识别方法研究进展[J].情报理论与实践, 2019, 42(10):162-169.
[48] JIA W, WANG S, XIE Y, et al. Disruptive technology identification of intelligent logistics robots in AIoT industry:based on attributes and functions analysis[J]. Systems research and behavioral science, 2022, 39(3):557-568.
[49] 谭晓,西桂权,苏娜,等.科学-技术-项目联动视角下颠覆性技术识别研究[J].情报杂志, 2023, 42(2):82-91.
[50] 冯倩倩,张光宇,戴海闻,等.颠覆性技术遴选的指标体系与流程设计——基于扎根理论的多案例研究[J].科技管理研究, 2021, 41(24):50-59.
[51] ILEANA M. The influence of disruptive technologies in the field of defense[J]. Land forces academy review, 2021, 26(4):288-292.
[52] 韩芳,张生太,冯凌子,等.基于专利文献技术融合测度的突破性创新主题识别——以太阳能光伏领域为例[J].数据分析与知识发现, 2021, 5(12):137-147.
[53] 李静,徐路路,赵素君.基于时间序列分析和SVM模型的基金项目新兴主题趋势预测与可视化研究[J].情报理论与实践, 2019, 42(1):118-123, 152.
[54] 张博,郭丹凝,彭苏萍.中国工程科技能源领域2035发展趋势与战略对策研究[J].中国工程科学, 2017, 19(1):64-72.
[55] 王效岳,赵冬晓,白如江.基于专利文本数据挖掘的技术预测方法与实证研究——以纳米技术在能源领域应用为例[J].情报理论与实践, 2017, 40(4):106-110.
[56] 赵蓉英,戴祎璠,王旭.基于LDA模型与ATM模型的学者影响力评价研究——以我国核物理学科为例[J].情报科学, 2019, 37(6):3-9.
[57] 陈伟,林超然,李金秋,等.基于LDA-HMM的专利技术主题演化趋势分析——以船用柴油机技术为例[J].情报学报, 2018, 37(7):732-741.
[58] 王康,高继平,潘云涛,等.多位态研究主题识别及其演化路径方法研究[J].图书情报工作, 2021, 65(11):113-122.
[59] 廖芃鑫,马晓娟,闻杰.预警指标集构建路径研究——以印巴冲突为例[J].情报杂志, 2021, 40(4):82-91.
[60] 刘晓豫,朱东华,汪雪锋,等.多专长专家识别方法研究——以大数据领域为例[J].图书情报工作, 2018, 62(3):55-63.