[1] 苏新宁. 大数据时代情报学学科崛起之思考[J]. 情报学报, 2018, 37(5):451-459. (SU X N. The rise of intelligence studies in the age of big data[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(5):451-459.)
[2] 陈芬, 苏新宁. 我国情报学学科发展现状与未来思考[J]. 情报学报, 2019, 38(9):988-996. (CHEN F, SU X N. Current situation and thoughts about future developments of information science in China[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(9):988-996.)
[3] 杨建林, 苗蕾. 情报学学科建设面临的主要问题与发展方向[J]. 科技情报研究, 2019, 1(1):29-50. (YANG J L, MIAO L. Major problems in discipline construction of information science and the development direction of the discipline[J]. Scientific information research, 2019, 1(1):29-50.)
[4] 苏新宁. 不忘初心、牢记使命展望情报学与情报工作的未来[J]. 科技情报研究, 2019, 1(1):1-12. (SU X N. Remain true to our original aspiration and keep our mission in mind looking to the future of intelligence studies and work[J]. Scientific information research, 2019, 1(1):1-12.)
[5] 孙建军, 李阳. 论情报学与情报工作" 智慧" 发展的几个问题[J]. 信息资源管理学报, 2019, 9(1):4-8. (SUN J J, LI Y. On several issues about the "smart" development of intelligence studies and intelligence work[J]. Journal of information resources management, 2019, 9(1):4-8.)
[6] LIU P, YUAN W, FU J, et al. Pre-train, prompt, and predict:a systematic survey of prompting methods in natural language processing[J]. arXiv preprint arXiv:2107.13586, 2021.
[7] HAN X, ZHANG Z, DING N, et al. Pre-trained models:past, present and future[J]. AI open, 2021, 2:225-250.
[8] 刘欢, 张智雄, 王宇飞. BERT模型的主要优化改进方法研究综述[J]. 数据分析与知识发现, 2021, 5(1):3-15. (LIU H, ZHANG Z X, WANG Y F. A review on main optimization methods of bert[J]. Data analysis and knowledge discovery, 2021, 5(1):3-15.)
[9] SHANNON C E. A mathematical theory of communication[J]. The bell system technical journal, 1948, 27(3):379-423.
[10] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
[11] PENNINGTON J, SOCHER R, MANNING C D. Glove:global vectors for word representation[C]//Proceedings of the 2014 conference on empirical methods in natural language processing. Doha:Association for Computational Linguistics, 2014:1532-1543.
[12] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[J]. arXiv preprint arXiv:1607.01759, 2016.
[13] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[J]. arXiv preprint arXiv:1802.05365, 2018.
[14] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pretraining[EB/OL].[2023-12-02]. https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf.
[15] DEVLIN J, CHANG M W, LEE K, et al. Bert:pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.
[16] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI blog, 2019, 1(8):9.
[17] BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[J]. arXiv preprint arXiv:2005.14165, 2020.
[18] YANG Z, DAI Z, YANG Y, et al. Xlnet:generalized autoregressive pretraining for language understanding[J]. arXiv preprint arXiv:1906.08237, 2019.
[19] ZHAO L, LIU Y, ZHANG M Y, et al. Modeling label-wise syntax for fine-grained sentiment analysis of reviews via-based neural model[J]. Information processing & management, 2021, 58(5):102641.
[20] PAMUNGKAS E W, BASILE V, PATTI V. A joint learning approach with knowledge injection for zero-shot cross-lingual hate speech detection[J]. Information processing & management, 2021, 58(4):102544.
[21] 潘宏鹏, 汪东, 刘忠轶, 等. 考虑反讽语义识别的协同双向编码舆情评论情感分析研究[J]. 情报杂志, 2022, 41(5):99-105, 111. (PAN H P, WANG D, LIU Z Y, et al. Public opinion comments sentiment analysis research considering ironic semantic recognition based on the collaborative bert[J]. Journal of intelligence, 2022, 41(5):99-105, 111.)
[22] 常城扬, 王晓东, 张胜磊. 基于深度学习方法对特定群体推特的动态政治情感极性分析[J]. 数据分析与知识发现, 2021, 5(3):121-131. (CHANG C Y, WANG X D, ZHANG S L. Polarity analysis of dynamic political sentiments from tweets with deep learning method[J]. Data analysis and knowledge discovery, 2021, 5(3):121-131.)
[23] JIN W, ZHAO B, ZHANG L, et al. Back to common sense:Oxford dictionary descriptive knowledge augmentation for aspect-based sentiment analysis[J]. Information processing & management, 2023, 60(3):103260.
[24] LEI Y T, LI Y T. A novel scheme of domain transfer in documentlevel cross-domain sentiment classification[J]. Journal of information science, 2023, 49(3):567-581.
[25] 刘继, 顾凤云. 基于BERT与BiLSTM混合方法的网络舆情非平衡文本情感分析[J]. 情报杂志, 2022, 41(4):104-110. (LIU J, GU F Y. Unbalanced text sentiment analysis of network public opinion based on BERT and BiLSTM hybrid method[J]. Journal of intelligence, 2022, 41(4):104-110.)
[26] 余本功, 张书文. 基于BAGCNN的方面级别情感分析研究[J]. 数据分析与知识发现, 2021, 5(12):37-47. (YU B G, ZHANG S W. Aspect-level sentiment analysis based on BAGCNN[J]. Data analysis and knowledge discovery, 2021, 5(12):37-47.)
[27] YANG T T, LI F, JI D H, et al. Fine-grained depression analysis based on Chinese micro-blog reviews[J]. Information processing & management, 2021, 58(6):102681.
[28] 赖宇斌, 陈燕, 胡小春, 等. 基于提示嵌入的突发公共卫生事件微博文本情感分析[EB/OL].[2023-12-02]. http://kns.cnki.net/kcms/detail/10.1478.g2.20230206.1809.001.html. (LAI Y B, CHEN Y, HU X C, et al. Emotional analysis of public health emergency micro-blog based on prompt embedding[EB/OL].[2023-12-02]. http://kns.cnki.net/kcms/detail/10.1478.g2.20230206.1809.001.html.)
[29] 黄泰峰, 马静. 基于提示学习增强的文本情感分类算法[EB/OL].[2023-12-02]. http://kns.cnki.net/kcms/detail/10.1478.G2.20230711.1243.008.html. (HUANG T F, MA J. Text sentiment classification algorithm based on prompt learning enhancement[EB/OL].[2023-12-02]. http://kns.cnki.net/kcms/detail/10.1478.G2.20230711.1243.008.html.)
[30] 陆伟, 李鹏程, 张国标, 等. 学术文本词汇功能识别——基于BERT向量化表示的关键词自动分类研究[J]. 情报学报, 2020, 39(12):1320-1329. (LU W, LI P C, ZHANG G B, et al. Recognition of lexical functions in academic texts:automatic classification of keywords based on BERT vectorization[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(12):1320-1329.)
[31] 秦成磊, 章成志. 基于层次注意力网络模型的学术文本结构功能识别[J]. 数据分析与知识发现, 2020, 4(11):26-42. (QIN C L, ZHANG C Z. Recognizing structure functions of academic articles with hierarchical attention network[J]. Data analysis and knowledge discovery, 2020, 4(11):26-42.)
[32] 马晓慧, 赵文娟, 刘忠宝. 基于深度学习的多学科多层次学术论文结构功能识别方法比较研究[J]. 情报科学, 2021, 39(8):94-102. (MA X H, ZHAO W J, LIU Z B. Multi-disciplinary and multi-level comparative research on methods of academic text structure function recognition based on deep learning[J]. Information science, 2021, 39(8):94-102.)
[33] 胡忠义, 税典程, 吴江. 基于ERNIE和DPCNN的科技文献摘要结构要素识别[EB/OL].[2023-12-02]. http://kns.cnki.net/kcms/detail/10.1478.g2.20230506.1736.002.html. (HU Z Y, SHUI D C, WU J. ERNIE-DPCNN-based structural elements identification of abstracts in academic literature[EB/OL].[2023-12-02]. http://kns.cnki.net/kcms/detail/10.1478.g2.20230506.1736.002.html.)
[34] 杜新玉, 李宁. 中文学术论文全文语步识别研究[EB/OL].[2023-12-02]. http://kns.cnki.net/kcms/detail/10.1478.G2.20230224.1443.004.html. (DU X Y, LI N. Research on recognition of moves in full-text Chinese academic papers[EB/OL].[2023-12-02]. http://kns.cnki.net/kcms/detail/10.1478.G2.20230224.1443.004.html.)
[35] YU G, ZHANG Z, LIU H, et al. Masked sentence model based on BERT for move recognition in medical scientific abstracts[J]. Journal of data and information science, 2019, 4(4):42-55.
[36] 王末, 崔运鹏, 陈丽, 等. 基于深度学习的学术论文语步结构分类方法研究[J]. 数据分析与知识发现, 2020, 4(6):60-68. (WANG M, CUI Y P, CHEN L, et al. A deep learning-based method of argumentative zoning for research articles[J]. Data analysis and knowledge discovery, 2020, 4(6):60-68.)
[37] 张国标, 李鹏程, 陆伟, 等. 多特征融合的关键词语义功能识别研究[J]. 图书情报工作, 2021, 65(9):89-96. (ZHANG G B, LI P C, LU W, et al. Research on keyword semantic function recognition based on multi-feature fusion[J]. Library and information service, 2021, 65(9):89-96.)
[38] 郭航程, 何彦青, 兰天, 等. 基于Paragraph-BERT-CRF的科技论文摘要语步功能信息识别方法研究[J]. 数据分析与知识发现, 2022, 6(Z1):298-307. (GUO H, C HE Y Q, LAN T, et al. Identifying moves from scientific abstracts based on ParagraphBERT-CRF[J]. Data analysis and knowledge discovery, 2022, 6(Z1):298-307.)
[39] 罗鹏程, 王一博, 王继民. 基于深度预训练语言模型的文献学科自动分类研究[J]. 情报学报, 2020, 39(10):1046-1059. (LUO P C, WANG Y B, WANG J M. Automatic discipline classification for scientific papers based on a deep pre-training language model[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(10):1046-1059.)
[40] 周泽聿, 王昊, 赵梓博, 等. 融合关联信息的GCN文本分类模型构建及其应用研究[J]. 数据分析与知识发现, 2021, 5(9):31-41. (ZHOU J Y, WANG H, ZHAO Z B, et al. Construction and application of GCN model for text classification with associated information[J]. Data analysis and knowledge discovery, 2021, 5(9):31-41.)
[41] CARVALLO A, PARRA D, LOBEL H, et al. Automatic document screening of medical literature using word and text embeddings in an active learning setting[J]. Scientometrics, 2020, 125(3):3047-3084.
[42] 刘江峰, 林立涛, 刘畅, 等. 深度学习驱动的海量人文社会科学学术文献学科分类研究[J]. 情报理论与实践, 2023, 46(2):71-81. (LIU J F, LIN L T, LIU C, et al. Study on the discipline classification of massive humanities and social science academic literature driven by deep learning[J]. Information studies:theory & application, 2023, 46(2):71-81.)
[43] 吕琦, 上官燕红, 张琳, 等. 基于文本内容自动分类的跨学科测度研究[J]. 数据分析与知识发现, 2023, 7(4):56-67. (LV Q, SHANGGUAN Y H, ZHANG L. Interdisciplinary measurement based on automatic classification of text content[J]. Data analysis and knowledge discovery, 2023, 7(4):56-67.)
[44] 赵旸, 张智雄, 刘欢. 基于层次分类法的中文医学文献分类研究[J]. 图书馆学研究, 2021(21):49-55, 61. (ZHAO Y, ZHANG Z X, LIU H. A research on automatic classification of Chinese medical literature based on hierarchical classification[J]. Research on library science, 2021(21):49-55, 61.)
[45] 戎璐, 张亚洲. 一种注意力序列到序列模型的生成式层次文档分类[J]. 图书馆学研究, 2022(5):45-56. (RONG L, ZHANG Y Z. An attentive sequence to sequence learning model for hierarchical document classification[J]. Research on library science, 2022(5):45-56.)
[46] 梁媛, 王东波, 黄水清. 古籍同事异文的自动发掘研究[J]. 图书情报工作, 2021, 65(9):97-104. (LIANG Y, WANG D B, HUANG S Q. Research on automatic mining of variants expressing the same event in the ancient books[J]. Library and information service, 2021, 65(9):97-104.)
[47] 周好, 王东波, 黄水清. 古籍引书上下文自动识别研究——以注疏文献为例[J]. 情报理论与实践, 2021, 44(9):169-175. (ZHOU H, WANG D B, HUANG S Q. Automatic recognition citation context in early Chinese literature:take the annotated literature as an example[J]. Information studies:theory & application, 2021, 44(9):169-175.)
[48] 胡昊天, 张逸勤, 邓三鸿, 等. 面向数字人文的《四库全书》 子部自动分类研究——以SikuBERT和SikuRoBERTa预训练模型为例[J]. 图书馆论坛, 2022, 42(12):138-148. (HU H T, ZHANG Y Q, DENG S H, et al. Automatic text classification of "Zi" part of Siku Quanshu from the perspective of digital humanities:based on SikuBERT and SikuRoBERTa pre-trained models[J]. Library tribune, 2022, 42(12):138-148.)
[49] 张力元, 王军. 基于机器学习的古籍目录互著与别裁探析[J]. 中国图书馆学报, 2022, 48(2):47-61. (ZHANG L Y, WANG J. Research on inter record and analytic record of classical bibliography based on machine learning[J]. Journal of library science in China, 2022, 48(2):47-61.)
[50] 高瑞卿, 董启文, 方达, 等. 数字技术下《老子》文本与先秦两汉典籍的关系挖掘[J]. 情报杂志, 2021, 40(10):99-107. (GAO R Q, DONG Q W, FANG D, et al. Research on the relationship between the text of "Laozi" and the classics of the pre-Qin and Han dynasties based on digital technologies[J]. Journal of intelligence, 2021, 40(10):99-107.)
[51] MAO Y Q, FUNG K W. Use of word and graph embedding to measure semantic relatedness between unified medical language system concepts[J]. Journal of the American Medical Informatics Association, 2020, 27(10):1538-1546.
[52] LI R S, YU Q Y, HUANG S B, et al. Phrase embedding learning from internal and external information based on autoencoder[J]. Information processing & management, 2021, 58(1):102422.
[53] 李纲, 余辉, 毛进. 基于多层语义相似的技术供需文本匹配模型研究[J]. 数据分析与知识发现, 2021, 5(12):25-36. (LI G, YU H, MAO J. Matching model for technology supply and demand texts based on multi-layer semantic similarity[J]. Data analysis and knowledge discovery, 2021, 5(12):25-36.)
[54] XIE Q, ZHANG X Y, DING Y, et al. Monolingual and multilingual topic analysis using LDA and BERT embeddings[J]. Journal of informetrics, 2020, 14(3):101055.
[55] 梁继文, 杨建林, 王伟, 等. 科技项目及其成果文献的相关性评估研究[J]. 情报学报, 2022, 41(2):155-166. (LIANG J W, YANG J L, WANG W, et al. Analysis of the relevance evaluation of scientific-technological projects and achievements[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(2):155-166.)
[56] 郑洁, 黄辉, 秦永彬. 一种融合法律知识的相似案例匹配模型[J]. 数据分析与知识发现, 2022, 6(7):99-106. (ZHENG J, HUANG H, QIN Y B. Matching similar cases with legal knowledge fusion[J]. Data analysis and knowledge discovery, 2022, 6(7):99-106.)
[57] DING J, CHEN Y, LIU C. Exploring the research features of nobel laureates in physics based on the semantic similarity measurement[J]. Scientometrics, 2023, 128(9):5247-5275.
[58] 牛海波, 赵丹群, 郭倩影. 基于BERT和引文上下文的文献表征与检索方法研究[J]. 情报理论与实践, 2020, 43(9):125-131. (NIU H B, ZHAO D Q, GUO Q Y. Research on paper embedding and retrieval method based on BERT and citation context[J]. Information studies:theory & application, 2020, 43(9):125-131.)
[59] SAKATA W, SHIBATA T, TANAKA R, et al. FAQ retrieval using query-question similarity and BERT-based query-answer relevance[C]//Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval. New York:Association for Computing Machinery, 2019:1113-1116.
[60] 吕学强, 杜一凡, 张乐, 等. GKTR:一种融合图卷积拓扑特征和关键词特征的工程咨询报告检索模型[EB/OL].[2023-12-02]. http://kns.cnki.net/kcms/detail/10.1478.G2.20230509.1615.002.html. (LÜ X Q, DU Y F, ZHANG L, et al. GKTR:a retrieval model for engineering consulting reports fusing graph convolution topological features and keyword features[EB/OL].[2023-12-02]. http://kns.cnki.net/kcms/detail/10.1478.G2.20230509.1615.002.html.)
[61] 罗鹏程, 王继民, 王世奇, 等. 基于深度学习的科学数据集检索方法研究[J]. 情报理论与实践, 2022, 45(7):49-56. (LUO P C, WANG J M, WANG S Q, et al. Research on deep learning based scientific dataset retrieval method[J]. Information studies:theory & application, 2022, 45(7):49-56.)
[62] NOGUEIRA R, JIANG Z Y, CHO K, et al. Navigation-based candidate expansion and pretrained language models for citation recommendation[J]. Scientometrics, 2020, 125(3):3001-3016.
[63] WANG J M, PAN M, HE T T, et al. A pseudo-relevance feedback framework combining relevance matching and semantic matching for information retrieval[J]. Information processing & management, 2020, 57(6):102342.
[64] ZHENG Z, HUI K, HE B, et al. Contextualized query expansion via unsupervised chunk selection for text retrieval[J]. Information processing & management, 2021, 58(5):102672.
[65] 王日花. 基于多层异构网络的自动问答模型研究[J]. 情报科学, 2021, 39(10):76-87. (WANG R H. Automatic question answering model based on multi layers heterogeneous network[J]. Information science, 2021, 39(10):76-87.)
[66] 程子佳, 陈翀. 面向流行性疾病科普的用户问题理解与答案内容组织[J]. 数据分析与知识发现, 2022, 6(Z1):202-211. (CHENG Z J, CHEN C. Question comprehension and answer organization for scientific education of epidemics[J]. Data analysis and knowledge discovery, 2022, 6(Z1):202-211.)
[67] LI L, LI C L, JI D H. Deep context modeling for multiturn response selection in dialogue systems[J]. Information processing & management, 2021, 58(1):102415.
[68] ORAL B, EMEKLIGIL E, ARSLAN S, et al. Information extraction from text intensive and visually rich banking documents[J]. Information processing & management, 2020, 57(6):102361.
[69] 沈思, 左明聪, 王东波, 等. 基于课表知识抽取的情报学课程设置启示研究[J]. 情报学报, 2020, 39(12):1253-1263. (SHEN S, ZUO M C, WANG D B, et al. Research on information science curricula based on curriculum knowledge extraction[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(12):1253-1263.)
[70] 胡昊天, 王东波, 邓三鸿, 等. 基于情报学招聘实体挖掘的情报学教育及人才培养分析[J]. 情报理论与实践, 2021, 44(1):8-17. (HU H T, WANG D B, DENG S H, et al. Analyzing the information science education and training talents based on mining the information science recruitment entity[J]. Information studies:theory & application, 2021, 44(1):8-17.)
[71] 梁媛, 彭秋茹, 王东波, 等. 数据科学任职要求挖掘下的情报学教育及人才培养[J]. 情报理论与实践, 2021, 44(2):8-15, 25. (LIANG Y, PENG Q R, WANG D B, et al. Information science education and training talents under the job requirements knowledge mining[J]. Information studies:theory & application, 2021, 44(2):8-15, 25.)
[72] 刘浏, 伊凡, 王东波, 等. iSchools培养计划知识挖掘下的情报学教育及人才培养[J]. 情报理论与实践, 2021, 44(2):26-32. (LIU L, YI F, WANG D B, et al. Research on teaching of information science based on iSchool training program knowledge mining[J]. Information studies:theory & application, 2021, 44(2):26-32.)
[73] 景慎旗, 赵又霖. 面向中文电子病历文书的医学命名实体识别研究——一种基于半监督深度学习的方法[J]. 信息资源管理学报, 2021, 11(6):105-115. (JING S Q, ZHAO Y L. Recognizing clinical named entity from Chinese electronic medical record texts based on semi-supervised deep learning[J]. Journal of information resources management, 2021, 11(6):105-115.)
[74] FAN Y D, ZHOU S C, LI Y F, et al. Deep learning approaches for extracting adverse events and indications of dietary supplements from clinical text[J]. Journal of the American Medical Informatics Association, 2021, 28(3):569-577.
[75] YANG X, BIAN J, HOGAN W R, et al. Clinical concept extraction using transformers[J]. Journal of the American Medical Informatics Association, 2020, 27(12):1935-1942.
[76] DU J C, XIANG Y, SANKARANARAYANAPILLAI M, et al. Extracting postmarketing adverse events from safety reports in the vaccine adverse event reporting system (VAERS) using deep learning[J]. Journal of the American Medical Informatics Association, 2021, 28(7):1393-1400.
[77] FAN B, FAN W G, SMITH C, et al. Adverse drug event detection and extraction from open data:a deep learning approach[J]. Information processing & management, 2020, 57(1):102131.
[78] 张云秋, 汪洋, 李博诚. 基于RoBERTa-wwm动态融合模型的中文电子病历命名实体识别[J]. 数据分析与知识发现, 2022, 6(Z1):242-250. (ZHANG Y Q, WANG Y, LI B C. Identifying named entities of Chinese electronic medical records based on RoBERTa-wwm dynamic fusion model[J]. Data analysis and knowledge discovery, 2022, 6(Z1):242-250.)
[79] 崔竞烽, 郑德俊, 王东波, 等. 基于深度学习模型的菊花古典诗词命名实体识别[J]. 情报理论与实践, 2020, 43(11):150-155. (CUI J F, ZHENG D J, WANG D B, et al. Named entity recognition of chrysanthemum poetry based on deep learning models[J]. Information studies:theory & application, 2020, 43(11):150-155.)
[80] 徐晨飞, 叶海影, 包平. 基于深度学习的方志物产资料实体自动识别模型构建研究[J]. 数据分析与知识发现, 2020, 4(8):86-97. (XU C F, YE H Y, BAO P. Automatic recognition of produce entities from local chronicles with deep learning[J]. Data analysis and knowledge discovery, 2020, 4(8):86-97.)
[81] 杜悦, 王东波, 江川, 等. 数字人文下的典籍深度学习实体自动识别模型构建及应用研究[J]. 图书情报工作, 2021, 65(3):100-108. (DU Y, WANG D B, JIANG C, et al. Construction and application of entity recognition model based on deep learning of classics in digital humanities[J]. Library and information service, 2021, 65(3):100-108.)
[82] 刘江峰, 冯钰童, 王东波, 等. 数字人文视域下SikuBERT增强的史籍实体识别研究[J]. 图书馆论坛, 2022, 42(10):61-72. (LIU J F, FENG Y T, WANG D B, et al. Research on sikubert-enhanced entity recognition of historical records from the perspective of digital humanities[J]. Library tribune, 2022, 42(10):61-72.)
[83] 林立涛, 王东波, 刘江峰, 等. 数字人文视域下典籍动物命名实体识别研究——以SikuBERT预训练模型为例[J]. 图书馆论坛, 2022, 42(10):42-50. (LIN L T, WANG D B, LIU J F, et al. Animal named entity recognition in ancient Chinese classics from the perspective of digital humanities:based on SikuBERTpretraining model[J]. Library tribune, 2022, 42(10):42-50.)
[84] 喻雪寒, 何琳, 徐健. 基于RoBERTa-CRF的古文历史事件抽取方法研究[J]. 数据分析与知识发现, 2021, 5(7):26-35. (YU X H, HE L, XU J. Extracting events from ancient books based on RoBERTa-CRF[J]. Data analysis and knowledge discovery, 2021, 5(7):26-35.)
[85] 任秋彤, 王昊, 熊欣, 等. 融合GCN远距离约束的非遗戏剧术语抽取模型构建及其应用研究[J]. 数据分析与知识发现, 2021, 5(12):123-136. (REN Q T, WANG H, XIONG X, et al. Extracting drama terms with GCN long-distance constrain[J]. Data analysis and knowledge discovery, 2021, 5(12):123-136.)
[86] 刘浏, 秦天允, 王东波. 非物质文化遗产传统音乐术语自动抽取[J]. 数据分析与知识发现, 2020, 4(12):68-75. (LIU L, QIN T Y, WANG D B. Automatic extraction of traditional music terms of intangible cultural heritage[J]. Data analysis and knowledge discovery, 2020, 4(12):68-75.)
[87] 熊欣, 王昊, 邓三鸿. 面向方志知识图谱的术语抽取模型迁移学习研究[J]. 情报理论与实践, 2021, 44(4):176-184. (XIONG X, WANG H, DENG S H. A study on term extraction model with transfer learning for knowledge graph of local chronicles[J]. Information studies:theory & application, 2021, 44(4):176-184.)
[88] 张卫, 王昊, 邓三鸿, 等. 面向数字人文的古诗文本情感术语抽取与应用研究[J]. 中国图书馆学报, 2021, 47(4):113-131. (ZHANG W, WANG H, DENG S H, et al. Sentiment term extraction and application of Chinese ancient poetry text for digital humanities[J]. Journal of library science in China, 2021, 47(4):113-131.)
[89] 翟羽佳, 田静文, 赵玥. 基于BERT-BiLSTM-CRF模型的算法术语抽取与创新演化路径构建研究[J]. 情报科学, 2022, 40(4):71-78. (ZHAI Y J, TIAN J W, ZHAO Y. Algorithm term extraction and innovation evolution path construction based on BERT-BiLSTM-CRF model[J]. Information science, 2022, 40(4):71-78.)
[90] WU Q H, LI D F, HUANG L, et al. Optimization of hierarchical reinforcement learning relationship extraction model[J]. Information discovery and delivery, 2020, 48(3):129-136.
[91] 彭博. 基于ALBERT的网络文物信息资源实体关系抽取方法研究[J]. 情报杂志, 2022, 41(8):156-162, 178. (PENG B. Research on entity relationship extraction of cultural relic information resources with ALBERT[J]. Journal of intelligence, 2022, 41(8):156-162, 178.)
[92] 景慎旗, 赵又霖. 基于医学领域知识和远程监督的医学实体关系抽取研究[J]. 数据分析与知识发现, 2022, 6(6):105-114. (JING S Q, ZHAO Y L. Extracting medical entity relationships with domain-specific knowledge and distant supervision[J]. Data analysis and knowledge discovery, 2022, 6(6):105-114.)
[93] YUAN C, CAO Y, HUANG H. Collective prompt tuning with relation inference for document-level relation extraction[J]. Information processing & management, 2023, 60(5):103451.
[94] 刘忠宝, 党建飞, 张志剑. 《史记》历史事件自动抽取与事理图谱构建研究[J]. 图书情报工作, 2020, 64(11):116-124. (LIU Z B, DANG J F, ZHANG Z J. Research on automatic extraction of historical events and construction of event graph based on historical records[J]. Library and information service, 2020, 64(11):116-124.)
[95] 钱玲飞, 崔晓蕾. 基于数据增强的领域知识图谱构建方法研究[J]. 现代情报, 2022, 42(3):31-39. (QIAN L F, CUI X L. Research on construction method of domain knowledge graph based on transfer learning[J]. Journal of modern information, 2022, 42(3):31-39.)
[96] PENG C, YANG X, YU Z, et al. Clinical concept and relation extraction using prompt-based machine reading comprehension[J]. arXiv preprint arXiv:2303.08262, 2023.
[97] 鲍彤, 章成志. ChatGPT中文信息抽取能力测评——以三种典型的抽取任务为例[J]. 数据分析与知识发现, 2023, 7(9):1-11. (BAO T, ZHANG C Z. Performance evaluation of ChatGPT on Chinese information extraction:an empirical study by three typical extraction tasks[J]. Data analysis and knowledge discovery, 2023, 7(9):1-11.)
[98] JI D H, GAO J, FEI H, et al. A deep neural network model for speakers coreference resolution in legal texts[J]. Information processing & management, 2020, 57(6):102365.
[99] 阮光册, 涂世文, 田欣, 等. 多特征融合的英文科技文献增量式人名消歧应用研究[J]. 情报杂志, 2021, 40(9):147-153. (RUAN G C, TU S W, TIAN X, et al. Application research of incremental person name disambiguation in english scientific and technological literature based on multi feature fusion[J]. Journal of intelligence, 2021, 40(9):147-153.)
[100] 陈诗, 王东波, 黄水清. 数字人文下的典籍人称代词指代消解研究[J]. 情报理论与实践, 2021, 44(10):165-172. (CHEN S, WANG D B, HUANG S Q. Research on the resolution of personal pronoun in classical books under the digital humanism[J]. Information studies:theory & application, 2021, 44(10):165-172.)
[101] 韩普, 张展鹏, 张伟. 基于多任务学习和多态语义特征的中文疾病名称归一化研究[J]. 情报学报, 2021, 40(11):1234-1244. (HAN P, ZHANG Z P, ZHANG W. Chinese disease name normalization based on multi-task learning and polymorphic semantic features[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(11):1234-1244.)
[102] 李文娜, 张智雄. 基于联合语义表示的不同知识库中的实体对齐方法研究[J]. 数据分析与知识发现, 2021, 5(7):1-9. (LI W N, ZHANG Z X. Entity alignment method for different knowledge repositories with joint semantic representation[J]. Data analysis and knowledge discovery, 2021, 5(7):1-9.)
[103] 张琪, 江川, 纪有书, 等. 面向多领域先秦典籍的分词词性一体化自动标注模型构建[J]. 数据分析与知识发现, 2021, 5(3):2-11. (ZHANG Q, JIANG C, JI Y S, et al. Unified model for word segmentation and pos tagging of multi-domain pre-Qin literature[J]. Data analysis and knowledge discovery, 2021, 5(3):2-11.)
[104] 张逸勤, 邓三鸿, 胡昊天, 等. 预训练模型视角下的跨语言典籍风格计算研究[EB/OL].[2023-12-02]. http://kns.cnki.net/kcms/detail/10.1478.G2.20230207.1133.005.html. (ZHANG Y Q, DENG S H, HU H T, et al. Research on the style calculation of cross-language classics from the perspective of pre-training models[EB/OL].[2023-12-02]. http://kns.cnki.net/kcms/detail/10.1478.G2.20230207.1133.005.html.)
[105] 胡昊天, 邓三鸿, 张逸勤, 等. 数字人文视角下的非物质文化遗产文本自动分词及应用研究[J]. 图书馆杂志, 2022, 41(8):76-83. (HU H T, DENG S H, ZHANG Y, Q et al. Chinese word segmentation and application of intangible cultural heritage texts from the perspective of digital humanities[J]. Library journal, 2022, 41(8):76-83.)
[106] 唐雪梅, 苏祺, 王军, 等. 基于图卷积神经网络的古汉语分词研究[J]. 情报学报, 2023, 42(6):740-750. (TANG X M, SU Q, WANG J, et al. Ancient Chinese word segmentation based on graph convolutional neural network[J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(6):740-750.)
[107] 刘畅, 王东波, 胡昊天, 等. 面向数字人文的融合外部特征的典籍自动分词研究——以SikuBERT预训练模型为例[J]. 图书馆论坛, 2022, 42(6):44-54. (LIU C, WANG D B, HU H T, et al. Automatic word segmentation of classic books with external features for digital humanities:a case study of SikuBERTpretraining model[J]. Library tribune, 2022, 42(6):44-54.)
[108] 耿云冬, 张逸勤, 刘欢, 等. 面向数字人文的中国古代典籍词性自动标注研究——以SikuBERT预训练模型为例[J]. 图书馆论坛, 2022, 42(6):55-63. (GENG Y D, ZHANG Y Q, LIU H, et al. Automatic part-of-speech tagging of ancient Chinese texts in the context of digital humanities:a case study on SikuBERT's pretrained language model[J]. Library tribune, 2022, 42(6):55-63.)
[109] 赵连振, 张逸勤, 刘江峰, 等. 面向数字人文的先秦两汉典籍自动标点研究——以SikuBERT预训练模型为例[J]. 图书馆论坛, 2022, 42(12):120-128, 137. (ZHAO L Z, ZHANG Y Q, LIU J F, et al. Study on automatic punctuation of ancient Chinese classics of pre-Qin and Han dynasties in the context of digital humanities:taking SikuBERT pre-training model for example[J]. Library tribune, 2022, 42(12):120-128, 137.)
[110] 王倩, 王东波, 李斌, 等. 面向海量典籍文本的深度学习自动断句与标点平台构建研究[J]. 数据分析与知识发现, 2021, 5(3):25-34. (WANG Q, WANG D B, LI B, et al. Deep learning based automatic sentence segmentation and punctuation model for massive classical Chinese literature[J]. Data analysis and knowledge discovery, 2021, 5(3):25-34.)
[111] 李佩琪, 王昊, 任秋彤, 等. 融合结构特性的语义增强式古籍句读识别方法研究[J]. 情报学报, 2023, 42(2):150-163. (LI P Q, WANG H, REN Q T, et al. Study of antiquarian punctuation recognition methods incorporating semantic enhancement with structural properties[J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(2):150-163.)
[112] LEE J S, HSIANG J. Patent claim generation by fine-tuning OpenAI GPT-2[J]. World patent information, 2020, 62:101983.
[113] TAKESHITA S, GREEN T, FRIEDRICH N, et al. Cross-lingual extreme summarization of scholarly documents[EB/OL].[2023-12-02]. https://link.springer.com/article/10.1007/s00799-023-00373-2.
[114] LAMSIYAH S, MAHDAOUY A E, OUATIK S E A, et al. Unsupervised extractive multi-document summarization method based on transfer learning from BERT multi-task fine-tuning[J]. Journal of information science, 2023, 49(1):164-182.
[115] 王义真, 欧石燕, 陈金菊. 民事裁判文书两阶段式自动摘要研究[J]. 数据分析与知识发现, 2021, 5(5):104-114. (WANG Y Z, OU S Y, CHEN J J. Automatic abstracting civil judgment documents with two-stage procedure[J]. Data analysis and knowledge discovery, 2021, 5(5):104-114.)
[116] 徐润华, 王东波, 刘欢, 等. 面向古籍数字人文的《资治通鉴》自动摘要研究——以SikuBERT预训练模型为例[J]. 图书馆论坛, 2022, 42(12):129-137. (XU R H, WANG D B, LIU H, et al. Automatic summarization of Zizhi Tongjian from the perspective of digital humanities based on ancient Chinese books:a case of SikuBERT pre-training model[J]. Library tribune, 2022, 42(12):129-137.)
[117] 王宇飞, 张智雄, 赵旸, 等. 中文科技论文标题自动生成系统的设计与实现[J]. 数据分析与知识发现, 2023, 7(2):61-71. (WANG Y F, ZHANG Z X, ZHAO Y, et al. Designing and implementing automatic title generation system for sci-tech papers[J]. Data analysis and knowledge discovery, 2023, 7(2):61-71.)
[118] 刘江峰, 刘雏菲, 齐月, 等. AIGC助力数字人文研究的实践探索:SikuGPT驱动的古诗词生成研究[J]. 情报理论与实践, 2023, 46(5):23-31. (LIU J F, LIU C F, QI Y, et al. A practical exploration of AIGC-powered digital humanities research:a sikugpt driven research of ancient poetry generation[J]. Information studies:theory & application, 2023, 46(5):23-31.)
[119] 王彦莹, 王昊, 朱惠, 等. 基于文本生成技术的历史古籍事件识别模型构建研究[J]. 图书情报工作, 2023, 67(3):119-130. (WANG Y Y, WANG H, ZHU H, et al. Research on the construction of an event recognition model for historical antique books based on text generation technology[J]. Library and information service, 2023, 67(3):119-130.)