[1] AMIT S. Introducing the knowledge graph[EB/OL].[2023-11-05]. https://blog.google/products/search/introducing-knowledgegraph-things-not/.
[2] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4):589-606. (XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4):589-606.)
[3] 范智渊, 何璇, 梁品, 等. 中文医学文献的实体关系提取研究及在糖尿病医学文献中的应用[J]. 生物医学工程学杂志, 2021, 38(3):563-573. (FAN Z Y, HE X, LIANG P, et al. Research on entity relationship extraction of Chinese medical literature and application in diabetes medical literature[J]. Journal of biomedical engineering, 2021, 38(3):563-573.)
[4] 林燕榕, 张怡, 刘迪, 等. 基于肾病专科电子病历构建肾病医学知识图谱[J]. 西南大学学报(自然科学版), 2020, 42(11):52-58. (LIN Y R, ZHANG Y, LIU D, et al. Constructing a medical knowledge graph of nephropathy based on the electronic medical records of nephropathy specialists[J]. Journal of Southwest University (natural science edition), 2020, 42(11):52-58.)
[5] 付洋, 刘茂福, 乔瑞. 心脏病中文知识图谱的构建[J]. 武汉大学学报(理学版), 2020, 66(3):261-267. (FU Y, LIU M F, QIAO R. Construction of Chinese knowledge graph of heart disease[J]. Journal of Wuhan University (natural science edition), 2020, 66(3):261-267.)
[6] ERNST P, SIU A, WEIKUM G. KnowLife:a versatile approach for constructing a large knowledge graph for biomedical sciences[J]. BMC bioinformatics, 2015, 16(1):1-13.
[7] 金碧漪. 基于多源UGC数据的健康领域知识图谱构建[D]. 上海:华东师范大学, 2016. (JIN B Y. Construction of health knowledge graph based on multi-source UGC data[D]. Shanghai:East China Normal University, 2016.)
[8] YANG H Z, GAO H Y. Toward sustainable virtualized health care:extracting medical entities from Chinese online health consultations using deep neural networks[J]. Sustainability, 2018, 10(9):3292.
[9] ZHANG Y L, LI X M, ZHANG Z. Disease-pertinent knowledge extraction in online health communities using GRU based on a double attention mechanism[J]. IEEE access, 2020, 8:95947-95955.
[10] RAU L F. Extracting company names from text[C]//Proceedings the 7th IEEE conference on artificial intelligence application. Miami Beach:IEEE Computer Society, 1991:29-32.
[11] TODOROVIC B T, RANCIC S R, MARKOVICI M, et al. Named entity recognition and classification using context hidden Markov model[C]//Proceedings of the 9th symposium on neural network applications in electrical engineering. Belgrade:IEEE, 2008:43-46.
[12] LI D C, KARIN K S, GUERGANA S. Conditional random fields and support vector machines for disorder named entity recognition in clinical texts[C]//Proceedings of the workshop on current trends in biomedical natural language processing. Ohio:Association for Computational Linguistics, 2008:94-95.
[13] LIU X H, ZHANG S D, WEI F R, et al. Recognizing named entities in Tweets[C]//Proceedings of the 49th annual meeting of the association for computational linguistics:human language technologies. Oregon:Association for Computational Linguistics, 2011:359-367.
[14] LUO L, YANG Z, YANG P, et al. An attention-based BiLSTMCRF approach to document-level chemical named entity recognition[J]. Bioinformatics, 2018, 34(8):1381-1388.
[15] XU K, YANG Z G, KANG P P, et al. Document-level attention based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition[J]. Computers in biology and medicine. 2019, 108:122-132.
[16] 黄梦醒, 李梦龙, 韩惠蕊. 基于电子病历的实体识别和知识图谱构建的研究[J]. 计算机应用研究, 2019, 36(12):3735-3739. (HUANG M X, LI M L, HAN H R. Research on entity recognition and knowledge graph construction based on electronic medical records[J]. Application research of computers, 2019, 36(12):3735-3739.)
[17] 李纲, 潘荣清, 毛进, 等. 整合BiLSTM-CRF网络和词典资源的中文电子病历实体识别[J]. 现代情报, 2020, 40(4):3-12, 58. (LI G, PAN R Q, MAO J, et al. Entity recognition of Chinese electronic medical records based on BiLSTM -CRF network and dictionary resources[J]. Journal of modern information, 2020, 40(4):3-12, 58.)
[18] SOCHER R, HUVAL B, MANNING C D, et al. Semantic compositionality through recursive matrix-vector spaces[C]//Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning. Jeju Island:Association for Computational Linguistics, 2012:1201-1211.
[19] LIU C Y, SUN W B, CHAO W H, et al. Convolution neural network for relation extraction[C]//International conference on advanced data mining and applications. Berlin:Springer, 2013:231-242.
[20] SHEN Y, HUANG X J. Attention-based convolutional neural network for semantic relation extraction[C]//Proceedings of the 26th international conference on computational linguistics:technical papers. Osaka:The COLING 2016 organizing committee, 2016:2526-2536.
[21] ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th annual meeting of the Association for Computational Linguistics. Berlin:Association for Computational Linguistics, 2016:207-212.
[22] 张兰霞, 胡文心. 基于双向GRU神经网络和双层注意力机制的中文文本中人物关系抽取研究[J]. 计算机应用与软件, 2018, 35(11):130-135, 189. (ZHANG L X, HU W X. Character relation extraction in Chinese text based on bidirectional GRU neural network and dual-attention mechanism[J]. Computer applications and software, 2018, 35(11):130-135, 189.)
[23] HARRIS Z S. Distributional structure[J]. Word, 1954, 10(2/3):146-162.
[24] PENNINGTON J, SOCHER R, MANNING C D. Glove:global vectors for word representation[C]//Proceedings of the 2014 conference on empirical methods in natural language processing. Doha:Association for Computational Linguistics, 2014:1532-1543.
[25] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[C]//International conference on learning representations. Arizona:OpenReview.net, 2013.
[26] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics:human language technologies. Louisiana:Association for Computational Linguistics, 2018:2227-2237.
[27] DEVLIN J, CHANG M W, LEE K, et al. BERT:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics:human language technologies. Minnesota:Association for Computational Linguistics, 2019:4171-4186.
[28] 许力, 李建华. 基于BERT和BiLSTM-CRF的生物医学命名实体识别[J]. 计算机工程与科学, 2021, 43(10):1873-1879. (XU L, LI J H. Biomedical named entity recognition based on BERT and BiLSTM-CRF[J]. Computer engineering and science, 2021, 43(10):1873-1879.)
[29] CUI Y, CHE W, LIU T, et al. Pre-training with whole word masking for Chinese BERT[J]. IEEE/ACM transactions on audio, speech, and language processing, 2021, 29:3504-3514.
[30] 邱锡鹏. 神经网络与深度学习[M]. 北京:机械工业出版社, 2020:141-143. (QIU X P. Neural networks and deep learning[M]. Beijing:China Machine Press, 2020:141-143.)
[31] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016:325-327. (ZHOU Z H. Machine learning[M]. Beijing:Tsinghua University Press, 2016:325-327.)