[1] 易明, 张婷婷.大众性问答社区答案质量排序方法研究[J].数据分析与知识发现, 2019, 3(6):12-20.(YI M, ZHANG T T.Ranking answer quality of popular Q&A community[J].Data analysis and knowledge discovery, 2019, 3(6):12-20.)
[2] 徐彤阳, 滕琦.基于深度学习的虚拟学术社区智能问答研究[J].情报杂志, 2021, 40(4):163-169.(XU T Y, TENG Q.Research on intelligent question answering in virtual academic community based on deep learning[J].Journal of intelligence, 2021, 40(4):163-169.)
[3] 王伟, 冀宇强, 王洪伟, 等.中文问答社区答案质量的评价研究:以知乎为例[J].图书情报工作, 2017, 61(22):36-44.(WANG W, JI Y Q, WANG H W, et al.Evaluating Chinese answers' quality in the community QA system:a case study of Zhihu[J].Library and information service, 2017, 61(22):36-44.)
[4] 谢陈博.社交问答平台答案有用性评价影响因素研究[J].现代商贸工业, 2019, 40(10):56-59.(XIE C B.Research on factors affecting the usefulness evaluation of answers on social Q&A platforms[J].Modern business trade industry, 2019, 40(10):56-59.)
[5] 沈旺, 李世钰, 刘嘉宇, 等.问答社区回答质量评价体系优化方法研究[J].数据分析与知识发现, 2021, 5(2):83-93.(SHEN W, LI S Y, LIU J Y, et al.Optimizing quality evaluation for answers of Q&A community[J].Data analysis and knowledge discovery, 2021, 5(2):83-93.)
[6] 郭顺利, 张向先, 陶兴, 等.社会化问答社区用户生成答案质量自动化评价研究——以"知乎" 为例[J].图书情报工作, 2019, 63(11):118-130.(GUO S L, ZHANG X X, TAO X, et al.Research on automated evaluation of user generated answer quality in social question and answer community:taking "Zhihu" as an example[J].Library and information service, 2019, 63(11):118-130.)
[7] YANG L, QIU M, GOTTIPATI S, et al.CQArank:jointly model topics and expertise in community question answering[C]//Proceedings of the 22nd ACM international conference on information & knowledge management.New York:Association for Computing Machinery, 2013:99-108.
[8] 张成, 曲明成, 倪宁, 等.基于概率潜在语义分析模型的自动答案选择[J].计算机工程, 2011, 37(14):70-72.(ZHANG C, QU M C, NI N, et al.Automatic answer selection based on probabilistic latent semantic analysis model[J].Computer engineering, 2011, 37(14):70-72.)
[9] GUO L, HU X.Identifying authoritative and reliable contents in community question answering with domain knowledge[C]//LI J, CAO L, WANG C, et al.Trends and applications in knowledge discovery and data mining.Berlin:Springer, 2013:133-142.
[10] 袁健, 刘瑜.基于混合式的社区问答答案质量评价模型[J].计算机应用研究, 2017, 34(6):1708-1712.(YUAN J, LIU Y.Answer quality evaluation model for community question answering based on hybrid method[J].Application research of computers, 2017, 34(6):1708-1712.)
[11] 胡鹏辉.基于多模型的问答社区答案质量评价研究[D].南京:南京师范大学, 2019.(HU P H.Research on answer quality evaluation of question and answer community based on multimodel[D].Nanjing:Nanjing Normal University, 2019.)
[12] 陈鹏.社区问答系统中问句分类和答案评价研究及应用[D].重庆:重庆邮电大学, 2021.(CHENG P.Research and application of question classification and answer evaluation in community question answering[D].Chongqing:Chongqing University of Posts and Telecommunications, 2021.
[13] THAKUR N, REIMERS N, DAXENBERGER J, et al.Augmented SBERT:data augmentation method for improving Bi-Encoders for pairwise sentence scoring tasks[EB/OL].arXiv, 2021[2024-01-18].http://arxiv.org/abs/2010.08240.
[14] WANG B, LIU B, WANG X, et al.Deep Learning approaches to semantic relevance modeling for Chinese question-answer pairs[J].ACM transactions on Asian language information processing, 2011, 10(4):21:1-21:16.
[15] 刘江峰, 林立涛, 刘畅, 等.深度学习驱动的海量人文社会科学学术文献学科分类研究[J].情报理论与实践, 2023, 46(2):71-81.(LIU J F, LIN L T, LIU C.Study on the discipline classification of massive humanities and social science academic literature driven by deep learning[J].Information studies:theory & application, 2023, 46(2):71-81.)
[16] 王美月.学术虚拟社区用户社会化交互行为研究[D].长春:吉林大学, 2021.(WANG M Y.Research on users' social interaction behavior in academic virtual community[D].Changchun:Jilin University, 2021.)
[17] 论文投稿-学术交流区-小木虫论坛-学术科研互动平台[EB/OL].[2024-01-17].http://muchong.com/f-125-1.(Paper submission-academic discuss area-Xiaomuchong Forum-academic scientific research interactive platform[EB/OL].[2024-01-17].http://muchong.com/f-125-1.)
[18] REIMERS N, GUREVYCH I.Sentence-BERT:sentence embeddings using Siamese BERT-Networks[C]//Proceedings of the 2019 conference on empirical methods in natural language processing.Hong Kong:Association for Computational Linguistics, 2019:3982-3992.
[19] 成全, 邓婷燕.在线母婴社区的用户健康信息需求挖掘——基于妈妈网的实证[J].现代情报, 2022, 42(5):50-57.(CHENG Q, DENG T Y.Health information needs mining of pregnant women for online maternal and infant care community:an empirical study based on mom forum of Chinese[J].Journal of modern information, 2022, 42(5):50-57.)
[20] 宋仁君.基于虚拟社区的科研人员信息需求研究[D].天津:天津工业大学, 2017.(SONG R J.Research on the information needs of researchers in virtual community[D].Tianjin:Tiangong University, 2017.)
[21] DEVLIN J, CHANG M W, LEE K, et al.BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics:human language technologies.Minneapolis:Association for Computational Linguistics, 2019:4171-4186.
[22] CUI Y, CHE W, LIU T, et al.Pre-Training with whole word masking for Chinese BERT[J].IEEE/ACM transactions on audio, speech, and language processing, 2021, 29:3504-3514.
[23] Bert-base-multilingual-cased·Hugging Face[EB/OL].[2023-12-21].https://huggingface.co/bert-base-multilingual-cased.
[24] SERENGIL S.A gentle introduction to cross-entropy loss function[EB/OL].[2023-12-22].https://sefiks.com/2017/12/17/a-gentle-introduction-to-cross-entropy-loss-function/.
[25] LENG Z, TAN M, LIU C, et al.PolyLoss:a polynomial expansion perspective of classification loss functions[EB/OL].[2024-01-17].http://arxiv.org/abs/2204.12511.DOI:10.48550/arXiv.2204.12511.
[26] WOLF T, DEBUT L, SANH V, et al.Transformers:state-ofthe-art natural language processing[C]//Proceedings of the 2020 conference on empirical methods in natural language processing:system demonstrations.Association for Computational Linguistics, 2020:38-45.
[27] 刘伟利, 张海涛, 李依霖, 等.基于语义网络的社会化问答社区答案聚合与排序研究[J].情报科学, 2021, 39(9):94-100.(LIU W L, ZHANG H T, LI Y L, et al.Answer aggregation and sorting of social Q&A community based on semantic network[J].Information science, 2021, 39(9):94-100.)
[28] 李蕾, 何大庆, 章成志.社会化问答研究综述[J].数据分析与知识发现, 2018, 2(7):1-12.(LI L, HE D Q, ZHANG C Z.Survey on social question and answer[J].Data analysis and knowledge discovery, 2018, 2(7):1-12.
[29] JÄRVELIN K, KEKÄLÄINEN J.Cumulated gain-based evaluation of IR techniques[J].ACM transactions on information systems, 2002, 20(4):422-446.
[30] SAKAI T.Q-Measure[M]//LIU L, ÖZSU M T.Encyclopedia of database systems.New York:Springer, 2017:1-2.
[31] REIMERS N, GUREVYCH I.Sentence-BERT:sentence embeddings using Siamese BERT-networks:arXiv:1908.10084[R].arXiv, 2019.
[32] HOFSTÄTTER S, LIN S C, YANG J H, et al.Efficiently Teaching an Effective Dense Retriever with Balanced Topic Aware Sampling[C]//Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval.New York:Association for Computing Machinery, 2021:113-122.
[33] XIONG L, XIONG C, LI Y, et al.Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval[EB/OL].arXiv, 2020[2024-01-18].http://arxiv.org/abs/2007.00808.
[34] Sentence-transformers/msmarco-distilbert-base-dot-prod-v3·Hugging Face[EB/OL].[2023-12-31].https://huggingface.co/sentence-transformers/msmarco-distilbert-base-dotprod-v3.