[1] UZZI B, MUKHERJEE S, STRINGER M, et al. Atypical combinations and scientific impact[J]. Science, 2013, 342(6157): 468-472.
[2] 钱佳佳, 罗卓然, 陆伟. 基于问题-方法组合的科技论文新颖性度量与创新类型识别[J]. 图书情报工作, 2021, 65(14): 82-89. (QIAN J J, LUO Z R, LU W. Novelty measurement and innovation type identification of scientific literature based on question-method combination[J]. Library and information service, 2021, 65(14): 82-89.)
[3] 程齐凯, 李信, 陆伟. 领域无关学术文献词汇功能标准化数据集构建及分析[J]. 情报科学, 2019, 37(7): 41-47. (CHENG Q K, LI X, LU W. Construction and analysis of standard data set for domain-independent term function in academic texts[J]. Information science, 2019, 37(7): 41-47.)
[4] HEFFERNAN K, TEUFEL S. Identifying problems and solutions in scientific text[J]. Scientometrics, 2018, 116(2): 1367-1382.
[5] 陆伟, 李鹏程, 张国标, 等. 学术文本词汇功能识别——基于BERT向量化表示的关键词自动分类研究[J]. 情报学报, 2020, 39(12): 1320-1329. (LU W, LI P C, ZHANG G B, et al. Recognition of lexical functions in academic texts: automatic classification of keywords based on BERT vectorization[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(12): 1320-1329.)
[6] 张国标, 李鹏程, 陆伟, 等. 多特征融合的关键词语义功能识别研究[J]. 图书情报工作, 2021, 65(9): 89-96. (ZHANG G B, LI P C, LU W, et al. Research on keyword semantic function recognition based on multi-feature fusion[J]. Library and information service, 2021, 65(9): 89-96.)
[7] 程齐凯, 李鹏程, 张国标, 等. 学术文本词汇功能识别——基于标题生成策略和注意力机制的问题方法抽取[J]. 情报学报, 2021, 40(1): 43-52. (CHENG Q K, LI P C, ZHANG G B, et al. Recognition of lexical functions in academic texts: problem method extraction based on title generation strategy and attention mechanism [J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(1): 43-52.)
[8] 张颖怡, 章成志, 周毅, 等. 基于ChatGPT的多视角学术论文实体识别:性能测评与可用性研究[J]. 数据分析与知识发现, 2023, 7(9): 12-24. (ZHANG Y Y, ZHANG C Z, ZHOU Y, et al. ChatGPT-Based scientific paper entity recognition: performance measurement and availability research[J]. Data analysis and knowledge discovery, 2023, 7(9): 12-24.)
[9] 丁玉飞, 关鹏. 知识进化视角下科学文献传播网络演化与预测研究及应用[J]. 图书情报工作, 2018, 62(4): 72-80. (DING Y F, GUAN P. Study and application of translation and prediction of the scientific literature communication network from the perspective of knowledge evolution[J]. Library and information service, 2018, 62(4): 72-80.)
[10] 操玉杰, 毛进, 潘荣清, 等. 学科交叉研究的演化阶段特征分析——以医学信息学为例[J]. 数据分析与知识发现, 2019, 3(5): 107-116. (CAO Y J, MAO J, PAN R Q, et al. Analyzing characteristics of interdisciplinary research evolutions: case study of medical informatics[J]. Data analysis and knowledge discovery, 2019, 3(5): 107-116.)
[11] BEHROUZI S, SARMOOR Z S, HAJSADEGHI K, et al. Predicting scientific research trends based on link prediction in keyword networks[J]. Journal of informetrics, 2020, 14(4): 101079.
[12] MINA A, RAMLOGAN R, TAMPUBOLON G, et al. Mapping evolutionary trajectories: applications to the growth and transformation of medical knowledge[J]. Research policy, 2007, 36(5): 789-806.
[13] LIANG Z, LIU F, MAO J, et al. A knowledge representation model for studying knowledge creation, usage, and evolution[C]//International conference on information. Berlin: Springer, Cham, 2021: 97-111.
[14] ZHANG X, XIE Q, SONG C, et al. Mining the evolutionary process of knowledge through multiple relationships between keywords[J]. Scientometrics, 2022, 127(4): 2023-2053.
[15] 杨冠灿, 陈亮, 张静, 等. 专利引用关系形成的解释框架:一个指数随机图模型视角[J]. 图书情报工作, 2019, 63(5): 100-109. (YANG G C, CHENG L, ZHANG J, et al. Framework for explanations of patent citation formation: an exponential random graph model perspective[J]. Library and information service, 2019, 63(5): 100-109.)
[16] 段庆锋, 马丹丹. 基于指数随机图模型的专利技术扩散机制实证研究[J]. 科技进步与对策, 2018, 35(22): 23-29. (DUAN Q F, MA D D. Empirical research of patent technology diffusion mechanism based on ERGM[J]. Science & technology progress and policy, 2018, 35(22): 23-29.)
[17] 操玉杰, 李纲, 毛进, 等. 基于ERGM的学科交叉领域知识连接机制实证研究[J]. 图书情报工作, 2019, 63(19): 128-135. (CAO Y J, LI G, MAO J, et al. An empirical study on knowledge connection mechanism of interdisciplinary field based on ERGM[J]. Library and information service, 2019, 63(19): 128-135.)
[18] 宫雪, 崔雷. 基于医学主题词共现网络的链接预测研究[J]. 情报杂志, 2018, 37(1): 66-71, 52. (GONG X, CUI L. Link prediction in MeSH terms co-occurring networks[J]. Journal of information, 2018, 37(1): 66-71, 52.)
[19] 彭陶, 王建冬, 孙慧明. 基于关键词共现网络的我国图情领域近三十年学科发展脉络分析[J]. 大学图书馆学报, 2012, 30(2): 29-34. (PENG T, WANG J D, SUN H M. An analysis on development vein of Chinese library and information science during the past 30 years based on keywords co-occurrence network[J]. Journal of academic libraries, 2012, 30(2): 29-34.)
[20] 王晓光. 科学知识网络的形成与演化(II): 共词网络可视化与增长动力学[J]. 情报学报, 2010(2): 314-322. (WANG X G. Formation and evolution of science knowledge network(Ⅱ): co-word network visualization and growth dynamics[J]. Journal of the China Society for Scientific and Technical Information, 2010(2): 314-322.)
[21] 程齐凯. 学术文本的词汇功能识别[D]. 武汉: 武汉大学, 2015. (CHENG Q K. Recognition of lexical functions in academic texts [D]. Wuhan: Wuhan University, 2015.)
[22] 陆伟, 李鹏程, 张国标, 等. 学术文本词汇功能识别——基于BERT向量化表示的关键词自动分类研究[J]. 情报学报, 2020, 39(12): 1320-1329. (LU W, LI P C, ZHANG G B, et al. Recognition of lexical functions in academic texts: automatic classification of keywords based on BERT vectorization[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(12): 1320-1329.)
[23] ECK N J, WALTMAN L. How to normalize co-occurrence data? An analysis of some well‐known similarity measures[J]. Journal of the American Society for Information Science and Technology, 2009, 60(8): 1635-1651.
[24] HUNTER D R, HANDCOCK M S, BUTTS C T, et al. Ergm: a package to fit, simulate and diagnose exponential-family models for networks[J]. Journal of statistical software, 2008, 24(3): 1-29.
[25] 杨冠灿, 陈亮, 张静, 等. 专利引用关系形成的解释框架:一个指数随机图模型视角[J]. 图书情报工作, 2019, 63(5): 100-109. (YANG G C, CHENG L, ZHANG J, et al. Framework for explanations of patent citation formation: an exponential random graph model perspective[J]. Library and information service, 2019, 63(5): 100-109.)
[26] MOED H F. Measuring contextual citation impact of scientific journals[J]. Journal of informetrics, 2010, 4(3): 265-277.
[27] DINESH K S. Ranking of arts and humanities journals published in India: a scientometric analysis[J]. Pearl: a journal of library and information science, 2017, 11(2): 155-158.
[28] HUANG Y, BU Y, DING Y, et al. Partitioning highly, medium and lowly cited publications[J]. Journal of information science, 2021, 47(5): 609-614.
[29] KRIVITSKY P N, HUNTER D R, MORRIS M, et al. Ergm 4: new features for analyzing exponential-family random graph models[J]. Journal of statistical software, 2023, 105(6): 1-44.
[30] PESET F, GARZÓN-FARINÓS F, GONZÁLEZ L M, et al. Survival analysis of author keywords: an application to the library and information sciences area[J]. Journal of the Association for Information Science and Technology, 2020, 71(4): 462-473.