INFORMATION RESEARCH

Quantitative Research on Government Attention Allocation from Sentiment Analysis Perspective: Based on the Government Work Report

  • Lin Xi ,
  • Dong Yu ,
  • Zheng Xinman
Expand
  • 1 National Science Library, Chinese Academy of Sciences, Beijing 100190;
    2 Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190

Received date: 2023-07-24

  Revised date: 2023-11-30

  Online published: 2024-06-19

Supported by

This work is supported by the Project of Literature and Information Capacity Building, Chinese Academy of Sciences “Research on New Structured Evaluation System to Support the Reform of the Institute’s Scientific and Technological System” (Grant No. E1290424).

Abstract

[Purpose/Significance] Government attention shows the decision-makers’ reaction to specific issues, and its allocation can reflect the inherent laws of policy changes and policy ideology of decision-makers. Quantitative analysis of government attention allocation is a current research trend, but it is mostly based on key words statistics in policy texts, ignoring the emotional tendencies contained in it, thus affecting the fine granularity of the analysis. Degree words in Chinese policy texts can reflect the emotional attitude of decision-makers. The LAS policy text rating dictionary on degree words can measure the allocation of government attention in more detail from an emotional perspective. [Method/Process] The government work report is an important document of our government’s work deployment and also an intuitive presentation of the government’s attention allocation. Taking the government work report from 1978 to 2022 as the research text, this paper combined sentiment analysis with thematic analysis to analyze the overall characteristics and changing trends of our government’s attention allocation since the reform and opening up. [Result/Conclusion] Research shows that it is feasible and effective to quantify government attention allocation with the LAS policy text rating degree dictionary from sentiment analysis, which provides a new perspective for public management and policy research. It finds that Chinese government policymakers have long paid attention to the work relating to agriculture, rural areas and rural residents, and science and technology education. At the same time, they will adjust the attention allocation to specific tasks, such as ecological environment, medical and health, based on the development stage, international environment, public emergencies, etc.

Cite this article

Lin Xi , Dong Yu , Zheng Xinman . Quantitative Research on Government Attention Allocation from Sentiment Analysis Perspective: Based on the Government Work Report[J]. Library and Information Service, 2024 , 68(11) : 136 -147 . DOI: 10.13266/j.issn.0252-3116.2024.11.012

References

[1] 周庆山,曹文振. 50年来全球信息政策研究的阶段化演进历程、逻辑与展望[J].图书情报工作, 2022, 66(20):32-44.(ZHOU Q S, CAO W Z. Staged evolution, logic and prospect of global information policy research in the past 50 years[J]. Library and information service, 2022, 66(20):32-44.)
[2] 尚虎平.政府注意力的分配与改善路径[J].人民论坛, 2022(7):56-60.(SHANG H P. Allocation of government attention and improvement[J]. People's tribune, 2022(7):56-60.)
[3] JENNINGS W, JOHN P. The dynamics of political attention:public opinion and the queen's speech in the United Kingdom[J]. American journal of political science, 2009, 53(4):838-854.
[4] 代凯.注意力分配:研究政府行为的新视角[J].理论月刊, 2017(3):107-112.(DAI K. Attention allocation:a new perspective on government behavior[J]. Theory monthly, 2017(3):107-112.)
[5] 文宏.中国政府推进基本公共服务的注意力测量——基于中央政府工作报告(1954-2013)的文本分析[J].吉林大学社会科学学报, 2014, 54(2):20-26, 171.(WEN H. A Measurement of government's attention to basic public services in China:based on the text analysis of the central government work report (1954-2013)[J]. Jilin University journal social science edition, 2014, 54(2):20-26, 171.)
[6] 段永彪,郑烨,任由果.科技创新政策的政府注意力演变与启示——基于1978-2021年中央政府工作报告的文本分析[J].中国科技论坛, 2022(7):1-11.(DUAN Y B, ZHENG Y, REN Y G. The evolution and enlightenment of the government's attention to scientific and technological innovation policy:based on the text analysis of the central government work report from 1978 to 2021[J]. Forum on science and technology in China, 2022(7):1-11.)
[7] 郑新曼,董瑜.基于科技政策文本的程度词典构建研究[J].数据分析与知识发现, 2021, 5(10):81-93.(ZHENG X M, DONG Y. Constructing degree lexicon for STI policy texts[J]. Data analysis and knowledge discovery, 2021, 5(10):81-93.)
[8] 郑新曼,董瑜.基于程度词典优化的中文科技规划文本分析[J].现代情报, 2023, 43(9):74-84.(ZHENG X M, DONG Y. Text analysis of science and technology and innovation planning based on optimized degree lexicon[J]. Journal of modern information, 2023, 43(9):74-84.)
[9] 邓雪琳.改革开放以来中国政府职能转变的测量——基于国务院政府工作报告(1978-2015)的文本分析[J].中国行政管理, 2015(8):30-36.(DENG X L.A measurement of Chinese government functional transformation since reform and opening up based on text analysis of the report on the work of the government (1978-2015)[J]. Chinese public administration, 2015(8):30-36.)
[10] 安璐,吴林.融合主题与情感特征的突发事件微博舆情演化分析[J].图书情报工作, 2017, 61(15):120-129.(AN L, WU L. An integrated analysis of topical and emotional evolution of microblog public opinions on public emergencies[J]. Library and information service, 2017, 61(15):120-129.)
[11] NI X, XUE G R, LING X, et al. Exploring in the weblog space by detecting informative and affective articles[C]//Proceedings of the 16th international conference on World Wide Web. New York:Association for Computing Machinery, 2007:281-290.
[12] WANG P, JI L, YAN J, et al. Concept and attention-based CNN for question retrieval in multi-view learning[J]. ACM transactions on intelligent systems and technology, 2018, 9(4):1-24.
[13] XU H, YANG W, WANG J. Hierarchical emotion classification and emotion component analysis on Chinese micro-blog posts[J]. Expert systems with applications, 2015, 42(22):8745-8752.
[14] 张紫琼,叶强,李一军.互联网商品评论情感分析研究综述[J].管理科学学报, 2010, 13(6):84-96.(ZHANG Z Q, YE Q, LI Y J. Literature review on sentiment analysis of online product reviews[J]. Journal of management science and engineering, 2010, 13(6):84-96.)
[15] STAIANO J, GUERINI M. Depechemood:a lexicon for emotion analysis from crowd-annotated news[J]. arXiv preprint arXiv:1405.1605, 2014.
[16] 李水莲,张陈杰.不合规App隐私政策文本结构与情感倾向研究[J].青年记者, 2022,(18):57-59.(LI S L, ZHANG C J. Research on text structure and emotional tendency of non-compliant app privacy policy[J]. Youth journalist, 2022,(18):57-59.)
[17] 宋誉,周博.基于文本分析的第三方支付监管政策研究[J].法制与社会, 2021(7):99-102.(SONG Y, ZHOU B. Research on third-party payment supervision policies based on text analysis[J]. Rule by law and the society, 2021(7):99-102.)
[18] 张雨,吴俊.科技政策知识图谱构建研究[J].数字图书馆论坛, 2021(8):31-38.(ZHANG Y, WU J. Research on the construction of science and technology policy knowledge graph[J]. Digital library forum, 2021(8):31-38.)
[19] 孔媛,朱旭峰.中国国际关系智库的议题关注及态度分析[J].智库理论与实践, 2023, 8(5):65-78.(KONG Y, ZHU X F. Topic and attitude analysis of policy issues within international affairs think tanks[J]. Think tank:theory&practice, 2023, 8(5):65-78.)
[20] 王芳,朱宏智,朱健刚.我国社会组织政策主题与态度演化动因研究[J].现代情报, 2022, 42(7):3-21.(WANG F, ZHU H Z, ZHU J G. Motivation of theme and attitude evolution of social organization policies in China[J]. Modern information, 2022, 42(7):3-21.)
[21] 郑新曼.基于科技政策文本的程度词典构建与实证研究[D].北京:中国科学院文献情报中心, 2021.(ZHENG X M. Research on construction and application of degree lexicon based on STI policy texts[D]. Beijing:National Science Library, Chinese Academy of Sciences, 2021.)
[22] SIMON H A. Administrative behaviour:a study of decision making processes in administrative organizations[J]. Administrative science quarterly, 1947, 2(2):244.
[23] 庞明礼.领导高度重视:一种科层运作的注意力分配方式[J].中国行政管理, 2019(4):93-99.(PANG M L. Leaders attach great importance:an attention distribution approach of bureaucratic operation[J]. Chinese public administration, 2019(4):93-99.)
[24] 文宏,杜菲菲.注意力、政策动机与政策行为的演进逻辑——基于中央政府环境保护政策进程(2008-2015年)的考察[J].行政论坛, 2018, 25(2):80-87.(WENG H, DU F F. The evolution logic of attention, policy motivation and policy behavior:based on the inspection of process of central government's environmental protection policy from 2008 to 2015[J]. Administrative tribune, 2018, 25(2):80-87.)
[25] 柏必成.改革开放以来我国住房政策变迁的动力分析——以多源流理论为视角[J].公共管理学报, 2010, 7(4):76-85, 126.(BAI B C. Analysis on the dynamics of Chinese housing policy changes since reform and opening-up:from the perspective of multiple-streams framework[J]. Journal of public management, 2010, 7(4):76-85, 126.)
[26] 粟锋,曹宇轩,黄晞,等.拜登政府国家情报战略的注意力分配及其实践启示——基于对美国2023年《国家情报战略》的解析[J].情报杂志, 2024, 43(1):21-27.(SU F, CAO Y X, HUANG X, et al. The attention allocation of Biden administration's national intelligence strategy and its practical implications:analysis based on the 2023 National Intelligence Strategy of the United States[J]. Journal of intelligence, 2024, 43(1):21-27.)
[27] 许治,张建超.新中国成立以来政府对科技人才注意力研究——基于国务院政府工作报告(1954-2019年)文本分析[J].科学学与科学技术管理, 2020, 41(2):19-32.(XU Z, ZHANG J C.A study on the government's attention to scientific and technological talents since the founding of new China:based on the text analysis of the government work report (1954-2019)[J]. Science of science and management of S.&.T., 2020, 41(2):19-32.)
[28] 王洛忠,陈宇,都梦蝶.中央政府对信息化的注意力研究——基于1997-2019年国务院《政府工作报告》内容分析[J].理论探讨, 2019(5):177-182.(WANG L Z, CHEN Y, DU M D. On the attention of central government to informationization:based on the contents of the"government work report"of the state council from 1997 to 2019[J]. Theoretical investigation, 2019(5):177-182.)
[29] FRAGOPANAGOS N, TAYLOR J G. Modelling the interaction of attention and emotion[J]. Neurocomputing, 2006, 69(16/18):1977-1983.
[30] 李娜,姜恩波,朱一真,等.政策工具自动识别方法与实证研究[J].图书情报工作, 2021, 65(7):115-122.(LI N, JIANG E B, ZHU Y Z, et al. Policy tool identification method and empirical research based on deep learning[J]. Library and information service, 2021, 65(7):115-122.)
[31] 胡吉明,杨泽贤,朱国伟,等.中国政府在做什么——基于词汇关联的《政府工作报告》内容结构分析[J].信息资源管理学报, 2023, 13(1):115-128.(HU J M, YANG Z X, ZHU G W, et al. What is the Chinese government doing:a content structure network analysis of Chinese government work report based on word correlation[J]. Journal of information resources management, 2023, 13(1):115-128.)
[32] 国务院新闻办公室.解读《政府工作报告》修改情况[EB/OL].[2024-01-17]. https://www.gov.cn/xinwen/2021-03/13/content_5592798.htm. (The State Council Information Office of the People's Republic of China. Briefing on revision of government work report[EB/OL].[2024-01-17]. https://www.gov.cn/xinwen/2021-03/13/content_5592798.htm.)
[33] 孙柏瑛,周保民.政府注意力分配研究述评:理论溯源、现状及展望[J].公共管理与政策评论, 2022, 11(5):156-168.(SUN B Y, ZHOU B M. A review on government attention distribution:theoretical basis, current situation and prospects[J]. Public administration and policy review, 2022, 11(5):156-168.)
[34] 曹嘉君,王曰芬,陈盛之,等.多学科交叉综合的研究领域内学科间分布状态与演化研究[J].情报学报, 2020, 39(5):459-468.(CAO J J, WANG Y F, CHEN S Z, et al. Research on the distribution and evolution of interdisciplinarity in the multidisciplinary cross-synthesis research field[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(5):459-468.)
[35] 刘自强,王效岳,白如江.多维度视角下学科主题演化可视化分析方法研究——以我国图书情报领域大数据研究为例[J].中国图书馆学报, 2016, 42(6):67-84.(LIU Z Q, WANG X Y, BAI R J. Research on visualization analysis method of discipline topics evolution from the perspective of multi-dimensions:a case study of the big data in the field of library and information science in China[J]. Journal of library science in China, 2016, 42(6):67-84.)
Outlines

/