INFORMATION RESEARCH

The Formation Factors and Correlation Paths of Social Media Information Influence

  • Zhu Linlin ,
  • Li He ,
  • Liu Jiayu ,
  • Tian Zejin ,
  • Wu Heshun
Expand
  • 1 School of Business and Management, Jilin University, Changchun 130012;
    2 School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433

Received date: 2023-09-18

  Revised date: 2024-01-16

  Online published: 2024-07-09

Supported by

This work is supported by the project of National Social Science Fund of China titled “Research on the Formation Mechanism and Evaluation of the Influence of Online Reviews from the Perspective of Cognitive Schemas” (Grant No. 21CTQ015).

Abstract

[Purpose/Significance] The study aims to clarify the hierarchical relationship and correlation path among the formation factors of social media information influence, and to provide theoretical and practical support for the research. [Method/Process] Based on social cognitive theory, it extracted 14 formation factors from three aspects: behavior, cognition, and environment. Then, it analyzed the mutual influence relationship between formation factors on the ISM model, constructed a hierarchical system of formation factors, explored the dependence and driving force of formation factors with the MICMAC method. Finally, it determined the strength relationship between factors. [Result/Conclusion] It finds that emotional resonance of information receivers, value identification of information receivers, and the reputation of information publishers belong to the root layer factors and are in independent groups. The behavior of information disseminators in forwarding information and other factors indirectly affect the influence of social media information and belong to autonomous groups. Factors such as information quality can directly affect the influence of social media information and are in a dependent group.

Cite this article

Zhu Linlin , Li He , Liu Jiayu , Tian Zejin , Wu Heshun . The Formation Factors and Correlation Paths of Social Media Information Influence[J]. Library and Information Service, 2024 , 68(13) : 110 -121 . DOI: 10.13266/j.issn.0252-3116.2024.13.010

References

[1] SIMON K. Digital 2022: global overview report [EB/OL]. [2023-01-20]. https://datareportal.com/reports/digital-2022-globaloverview-report?utm_source=Global-Digital-Reports&utmmedium=Article&utm-campaign=Digital-2022.
[2] AGHAEE Z, KIANIAN S. Efficient influence spread estimation for influence maximization[J]. Social network analysis and mining, 2020, 10(1): 1-21.
[3] ZHANG B, ZHANG L, MU C, et al. A most influential node group discovery method or influence maximization n social networks: a trust-based perspective[J]. Data & knowledge engineering, 2019, 121: 71-87.
[4] DAZIANO R A, WAYGOOD E O D, PATTERSON Z, et al. Increasing the influence of co2 emissions information on car purchase[J]. Journal of cleaner production, 2017, 164: 861-871.
[5] ZOU P, LIU J. How nutrition information influences online food sales[J]. Journal of the academy of marketing science, 2019, 47(6): 1132-1150.
[6] TANG J, ZHOU X, ZHAO Y, et al. How the type and valence of feedback information influence volunteers’ knowledge contribution in citizen science projects[J]. Information processing & management, 2021, 58(5): 102633.
[7] 郭路生, 廖丽芳, 胡佳琪. 社交媒体用户健康信息传播行为的影响机制研究——基于风险认知与问题解决情境理论[J]. 现代情报, 2020, 40(3): 156-159. (GUO L S, LIAO L F, HU J Q. Research on the influence mechanism of health information communication behavior of social media users: based on risk perception theory and the problem solving situation theory[J]. Journal of modern information, 2020, 40(3): 156-159.)
[8] 马宁, 刘怡君. 微博中谣言信息与辟谣信息综合影响力对比研究[J]. 情报资料工作, 2020, 41(3): 41-48. (MA N, LIU Y J. Comparative research on the comprehensive influence of rumor information and refute rumor information in Weibo[J]. Information and documentation services, 2020, 41(3): 41-48.)
[9] 黄炜, 温莉文, 梁秋月. 社交自媒体环境下视频博客影响力评价指标体系研究[J]. 情报杂志, 2021, 40(12): 186-194. (HUANG W, WEN L W, LIANG Q Y. Research on vlog impact evaluation index system in social media environment[J]. Journal of intelligence, 2021, 40(12): 186-194.)
[10] 宋峰森, 陈洁, 刘尊礼, 等. 社交媒体信息传播实时影响力研究——以微博为例[J]. 上海管理科学, 2019, 41(4): 14-18. (SONG S F, CHEN J, LIU Z L, et al. Research on real time impact of social media: example of Weibo[J]. Shanghai management science, 2019, 41(4): 14-18.)
[11] 郭林, 陈洁, 顾程. 新媒体信息传播影响度测量方法的研究[J]. 软件产业与工程, 2016(2): 51-56. (GUO L, CHEN J, GU C. Research on the method of measuring the impact of new media information dissemination[J]. Software industry and engineering, 2016(2): 51-56.)
[12] BANDURA A. Social foundations of thoughts and action[J]. Journal of applied psychology, 1986, 617(1): 169-171.
[13] 安璐, 陈苗苗. 突发事件情境下政务微博信息发布有效性 评估 [J]. 情报 学报, 2022, 41(7): 692-706. (AN L, CHEN M M. Evaluating the effectiveness of government microblog information release in emergency situations[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(7): 692-706.)
[14] 易兰丽, 杨慧, 闫强. 基于优先连接机制的微博用户评论行为建模研究[J]. 情报杂志, 2018, 37(6): 96-101. (YI L L, YANG H, YAN Q. Research on modeling for comment behavior in microblog based on preferential attachment[J]. Journal of intelligence, 2018, 37(6): 96-101.)
[15] 江耘, 严由卫. 社会化媒体信息传播行为影响因素研究——以“ 网络 红人 ” 为视 角[J]. 情报 资料 工作, 2017(5): 70-75. (JIANG Y, YAN Y W. A probe into the influencing factors of social media information dissemination behavior: from the perspective of net celebrity [J]. Information and documentation services, 2017(5): 70-75.)
[16] 孟静. 在线评论对消费者购买决策的影响力研究[J]. 现代商业, 2018, 507(26): 28-30. (MENG J. A study on the influence of online reviews on consumer purchasing decisions[J]. Modern business, 2018, 507(26): 28-30.)
[17] 刘炜. 基于扩展TTF和UTAUT模型的老年用户社会化网络服务采纳行为研究[J]. 软科学, 2015, 29(3): 120-124. (LIU W. SNS acceptance of older adults based the extended TTF and UTAUT model[J]. Soft science, 2015, 29(3): 120-124.)
[18] 彭小青. 社会认知理论视角下居民网络疑病症的影响机制与治理策略研究[D]. 长沙: 中南大学, 2022. (PENG X Q. Research on influencing factors and management strategies of cyberchondria of residents from the perspective of social cognition theory[D]. Changsha: Central South University, 2022.)
[19] 胡仙, 吴江, 刘凯宇, 等. 点赞社交互动行为影响因素研究 ——基于微信朋友圈情境[J]. 情报科学, 2020, 38(1): 36-41. (HU X, WU J, LIU K Y, et al. The research on the influencing factors of users’ liking behavior in Wechat[J]. Information science, 2020, 38(1): 36-41.)
[20] 卢桦. 公安政务微博公众参与行为影响因素研究——基于 30个省会城市公安政务微博数据[D]. 成都: 电子科技大 学, 2018. (LU Y. Research on influencing factors of public participation behavior of police affairs microblog: based on microblog data of public security affairs in thirty capital cities [D]. Chengdu: University of Electronic Science and Technology of China, 2018.)
[21] WARFIELD J N. Societal systems planning, policy and complexity[J]. Cybernetics and system, 1978, 8(1): 113-115.
[22] LIM M K, TSENG M L, TAN K H, et al. Knowledge management in sustainable supply chain management: Improving performance through an interpretive structural modelling approach[J]. Journal of cleaner production, 2017, 162: 806-816.
[23] MALONE D. An introduction to the application of interpretive structural modeling[J]. Proceedings of the IEEE, 2005, 63(3):397-404.
[24] USMANI M S, WANG J, WAQAS M, et al. Identification and ranking of enablers to green technology adoption for manufacturing firms using an ISM-MICMAC approach[J]. Environmental science and pollution research, 2023, 30(17): 51327-51343.
[25] 彭蛟, 张子林, 彭小兵. 地摊经济发展融入城市治理的逻辑之道: 基于ISM-MICMAC模型[J]. 企业经济, 2021(6): 103-110. (PENG J, ZHANG Z L, PENG X B. Logical way to integration of street-stall economy development into urban governance[J]. Enterprise economy, 2021(6): 103-110.)
[26] 万震, 邹凯, 张艳丰, 等. 基于ISM-MICMAC的移动社交媒体倦怠影响因素与关联路径研究[J]. 信息资源管理学报, 2022, 12(1): 46-55. (WAN Z, ZOU K, ZHANG Y F, et al. Research on influencing factors and associated path of mobile social media fatigue based on ISM-MICMAC[J]. Journal of information resources management, 2022, 12(1): 46-55.)
[27] 张艳丰, 杨琬琛. 移动社交媒体用户数字囤积行为影响因素与关联路径研究[J]. 情报理论与实践, 2023, 46(9): 115-121. (ZHANG Y F, YANG W C. Influencing factors and associated paths of the digital hoarding behavior mobile social media users[J]. Information studies: theory & application, 2023, 46(9): 115-121.)
[28] 龚思兰, 丁晟春, 周夏伟, 等. 在线商品评论信息可信度影 响因 素实 证研 究[J]. 情报 杂志, 2013, 32(11): 202-207, 180. (GONG S L, DING S C, ZHOU X W, et al. An empirical research of online commodity reviews information credibility factors[J]. Journal of intelligence, 2013, 32(11): 202-207, 180.)
[29] 王洪坚. 权威源于信任——新形势下司法公信力建设的反思与探讨[J]. 山东审判, 2014, 30(3): 56-60. (WANG H J. Authority originates from trust: reflection and exploration on the construction of judicial credibility in the new situation[J]. Shandong judges training institute journal, 2014, 30(3): 56-60.)
Outlines

/