[1] 中国互联网络信息中心. 第53次《中国互联网络发展状况 统计 报告》 [EB/OL]. [2024-03-22]. https://www.cnnic.net.cn/n4/2024/0321/c208-10962.html. (China Internet Network Information Center. The 53rd statistical report on China’s internet development[EB/OL]. [2024-05-20]. https://www.cnnic.net.cn/n4/2024/0321/c208-10962.html.)
[2] 黄炜, 童青云, 李岳峰. 基于广度学习的异构社交网络敏感实体识别模型研究[J]. 情报学报, 2020, 39(6): 579-588. (HUANG W, TONG Q Y, LI Y F. Research on terror-related sensitive entity recognition model of a heterogeneous social network based on broad learning[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(6): 579-588.)
[3] 梁怀新, 宋诚. AIGC时代的网络信息内容生态安全风险及其治理——兼以ChatGPT为对象的实验访谈案例分析[J]. 图书情报工作, 2023, 67(20): 58-69. (LIANG H X, SONG C. Ecological security risk and governance of network information content in AIGC era: take ChatGPT as an example[J]. Library and information service, 2023, 67(20): 58-69.)
[4] 王浩. 基于半监督学习的网络敏感信息识别[D]. 天津: 天津大学, 2012. (WANG H. Internet sensitive information identification based on semi-supervised learning[D]. Tianjin: Tianjin University, 2012.)
[5] LIN Q, MAO R, LIU J, et al. Fusing topology contexts and logical rules in language models for knowledge graph completion[J]. Information fusion, 2023, 90: 253-264.
[6] 李佩琪, 王昊, 任秋彤, 等. 融合结构特性的语义增强式古籍句读识别方法研究[J]. 情报学报, 2023, 42(2): 150-163. (LI P Q, WANG H, REN Q T, et al. Study of antiquarian punctuation recognition methods incorporating semantic enhancement with structural properties[J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(2): 150-163.)
[7] 高浩鑫, 孙利娟, 吴京宸, 等. 基于异构图卷积网络的网络社区敏感文本分类模型[J]. 数据分析与知识发现, 2023, 7(11): 26-36. (GAO H X, SUN L J, WU J C, et al. Web community sensitive text classification model based on heterogeneous graph convolution network[J]. Data analysis and knowledge discovery, 2023, 7(11): 26-36.)
[8] FU Y, YU Y, WU X. A sensitive word detection method based on variants recognition[C]//2019 international conference on Machine learning, big data and business intelligence. Taiyuan: IEEE, 2019: 47-52.
[9] 李瀛, 王冠楠. 网络新闻敏感信息识别与风险分级方法研究[J]. 情报理论与实践, 2022, 45(4): 105-112. (LI Y, WANG G N. Research on identification and risk grading method of network news sensitive information[J]. Information studies: theory & application, 2022, 45(4): 105-112.)
[10] LIN H, JIANG J. Research on intelligent perception algorithm for sensitive information[J]. Applied sciences, 2023, 13(6): 3383.
[11] XU Y, JIAO Y, CHEN S, et al. Research on detection method of unhealthy message in social network[C]//International conference on artificial intelligence and security. Cham: Springer, 2019: 497-508.
[12] 陈祖琴, 蒋勋, 葛继科. 基于网络舆情敏感信息的突发事件情景分析[J]. 现代情报, 2021, 41(5): 25-32. (CHEN Z Q, JIANG X, GE J K. Emergency scenario analysis based on sensitive information of online public opinion[J]. Modern information, 2021, 41(5): 25-32.)
[13] XU Y, LI Y, ZHANG Z. Sensitive text classification and detection method based on sentiment analysis[J]. International core journal of engineering, 2021, 7(5): 60-66.
[14] ZHANG X, GHORBANI A A. An overview of online fake news: characterization, detection, and discussion[J]. Information processing & management, 2020, 57(2): 102025.
[15] CONG K, LI T, LI B, et al. KGDetector: detecting Chinese sensitive information via knowledge graph-enhanced BERT[J]. Security and communication networks, 2022, 2022: 4656837.
[16] 吴树芳, 杨强, 侯晓舟, 等. 基于SSI-GuidedLDA模型的引导式网络敏感信息识别研究[J]. 情报杂志, 2023, 42(11): 119-125. (WU S F, YANG Q, HOU X Z, et al. Research on guided network sensitive information identification based on SSI-GuidedLDA model[J]. Journal of information, 2023, 42(11): 119-125.)
[17] 高旭, 白如江, 王效岳. 面向“ 卡脖子” 技术场景的科技前沿发现与态势演化研究——以集成电路技术为例[J]. 图书情报工作, 2023, 67(4): 40-54. (GAO X, BAI R J, WANG X Y. Frontier discovery of science and technology and research on situation evolution for “neck stuck” technical scenario: taking integrated circuit technology as an example[J]. Library and information service, 2023, 67(4): 40-54.)
[18] 吴树芳, 尹凯. 基于敏感语义和复合共现的网络敏感词典构建研究[J]. 情报科学, 2023, 41(10): 12-20, 39. (WU S F, YIN K. Research on the construction of network sensitive dictionary based on sensitive semantic and compound co-occurrence[J]. Information science, 2023, 41(10): 12-20, 39.)
[19] ROZADO D, AL-GHARBI M, HALBERSTADT J. Prevalence of prejudice-denoting words in news media discourse: a chronological analysis[J]. Social science computer review, 2023, 41(1): 99-122.
[20] 孙瑞英, 李杰茹. 我国政府数据开放平台个人隐私保护政策评价研究[J]. 图书情报工作, 2022, 66(12): 3-16. (SUN R Y, LI J R. Research on the evaluation of personal privacy protection policies of government data open platforms in China[J]. Library and information service, 2022, 66(12): 3-16.)
[21] 韦景竹, 操慧子, 张乐乐. 基于在线评论的公共文化云活动用户需求研究[J]. 图书情报工作, 2022, 66(9): 66-73. (WEI J Z, CAO H Z, ZHANG L L. Research on users’ needs of public culture cloud activities based on online comments[J]. Library and information service, 2022, 66(9): 66-73.)
[22] 高靖超, 彭丽徽, 张艳丰, 等. 在线医疗社区健康焦虑用户画像模型构建及实证研究[J]. 图书情报工作, 2023, 67(16): 124-134. (GAO J C, PENG L H, ZHANG Y F, et al. Construction and empirical research of health anxiety user portrait model in online medical community[J]. Library and information service, 2023, 67(16): 124-134.)
[23] CHO K, VAN MERRIËNBOER B, BAHDANAU D, et al. On the properties of neural machine translation: encoder-decoder approaches[J]. arXiv preprint arXiv: 1409. 1259, 2014.
[24] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv: 1412.3555, 2014.
[25] 缪亚林, 姬怡纯, 张顺, 等. CNN-BiGRU模型在中文短文本情感分析的应用[J]. 情报科学, 2021, 39(4): 85-91. (MIAO Y L, JI Y C, ZHANG S, et al. Application of CNN-BiGRU model in Chinese short text sentiment analysis[J]. Information science, 2021, 39(4): 85-91.)
[26] BECKER J A, GUILBEAULT D, SMITH E B. The crowd classification problem: social dynamics of binary-choice accuracy[J]. Management science, 2022, 68(5): 3949-3965.
[27] MOHAMMAD A L S, HAMMAD M M, SA’AD A, et al. Gated recurrent unit with multilingual universal sentence encoder for arabic aspect-based sentiment analysis[J]. Knowledge-based systems, 2023, 261: 107540.
[28] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[29] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE transactions on signal processing, 1997, 45(11): 2673-2681.
[30] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.