[1] 王曰芬, 谢寿峰, 邱玉婷. 面向预警的专利文献相似度研究的意义及现状 [J]. 情报理论与实践, 2014, 37(7): 135-140. (WANG Y F, XIE S F, QIU Y T. Significance and current status of the research on patent similarity computation for early warning [J]. Information studies: theory & application, 2014, 37(7): 135-140.)
[2] 赖院根, 朱东华. 专利预警警情的理论研究 [J]. 科学学与科学技术管理, 2009, 30(2): 5-9. (LAI Y G, ZHU D H. Theoretical research on alert-situation of patent early-warning system [J]. Science of science and management of S.&.T., 2009, 30(2): 5-9.)
[3] KIM S, YOON B. Patent infringement analysis using a text mining technique based on SAO structure [J]. Computers in industry, 2021, 125: 103379.
[4] PARK I, YOON B. A semantic analysis approach for identifying patent infringement based on a product–patent map [J]. Technology analysis & strategic management, 2014, 26(8): 855-874.
[5] ZHU D. Bibliometric analysis of patent infringement retrieval model based on self-organizing map neural network algorithm [J]. Library hi tech, 2020, 38(2): 479-491.
[6] LEE C, SONG B, PARK Y. How to assess patent infringement risks: a semantic patent claim analysis using dependency relationships [J]. Technology analysis & strategic management, 2013, 25(1): 23-38.
[7] CHEN L, XU S, ZHU L, et al. A deep learning based method for extracting semantic information from patent documents [J]. Scientometrics, 2020, 125(1): 289-312.
[8] LIN W, YU W, XIAO R. Measuring patent similarity based on text mining and image recognition [J]. Systems, 2023, 11(6): 294.
[9] 张杰, 孙宁宁, 张海超, 等. 基于SAO结构的中文相似专利识别算法及其应用 [J]. 情报学报, 2016, 35(5): 472-482. (ZHANG J, SUN N N, ZHANG H C, et al. Method and application of Chinese similar patents recognition based on SAO structures [J]. Journal of the China Society for Scientific and Technical Information, 2016, 35(5): 472-482.)
[10] WANG X, REN H, CHEN Y, et al. Measuring patent similarity with SAO semantic analysis [J]. Scientometrics, 2019, 121(1): 1-23.
[11] LEE S, YOON B, PARK Y. An approach to discovering new technology opportunities: Keyword-based patent map approach [J]. Technovation, 2009, 29(6-7): 481-497.
[12] LEE C, CHO Y, SEOL H, et al. A stochastic patent citation analysis approach to assessing future technological impacts [J]. Technological forecasting and social change, 2012, 79(1): 16-29.
[13] 吕学强, 罗艺雄, 李家全, 等. 中文专利侵权检测研究综述 [J]. 数据分析与知识发现, 2021, 5(3): 60-68. (LV X Q, LUO Y X, LI J Q, et al. Review of studies on detecting Chinese patent infringements [J]. Data analysis and knowledge discovery, 2021, 5(3): 60-68.)
[14] 马文姗, 赵海宁, 翟东升. 中文专利侵权检索模型研究 [J]. 情报杂志, 2012, 31(4): 175-179,195. (MA W S, ZHAO H N, ZHAI D S. Research on Chinese patent infringement retrieval model [J]. Journal of intelligence, 2012, 31(4): 175-179,195.)
[15] 彭继东, 谭宗颖. 一种基于文本挖掘的专利相似度测量方法及其应用 [J]. 情报理论与实践, 2010, 33(12): 114-118. (PENG J D, TAN Z Y. A text mining-based patent similarity measurement method and its application [J]. Information studies: theory & application, 2010, 33(12): 114-118.)
[16] 俞琰, 陈磊, 姜金德, 等. 结合词向量和统计特征的专利相似度测量方法 [J]. 数据分析与知识发现, 2019, 3(9): 53-59. (YU Y, CHEN L, JIANG J D, et al. Measuring patent similarity with word embedding and statistical features [J]. Data analysis and knowledge discovery, 2019, 3(9): 53-59.)
[17] YOON B U, YOON C B, PARK Y T. On the development and application of a self–organizing feature map–based patent map [J]. R&D Management, 2002, 32(4): 291-300.
[18] 曹祺, 赵伟, 张英杰, 等. 基于Doc2Vec的专利文件相似度检测方法的对比研究 [J]. 图书情报工作, 2018, 62(13): 74-81. (CAO Q, ZHAO W, ZHANG Y J, et al. Comparative study of patent documents similarity detection on deep learning of Doc2Vec based methods [J]. Library and information service, 2018, 62(13): 74-81.)
[19] BALTRUŠAITIS T, AHUJA C, MORENCY L P. Multimodal machine learning: a survey and taxonomy [J]. IEEE transactions on pattern analysis and machine intelligence, 2019, 41(2): 423-443.
[20] ATREY P K, HOSSAIN M A, EL SADDIK A, et al. Multimodal fusion for multimedia analysis: a survey [J]. Multimedia systems, 2010, 16(6): 345-379.
[21] JABEEN S, LI X, AMIN M S, et al. A review on methods and applications in multimodal deep learning [J]. ACM trans. multimed comput. commun. appl, 2023, 19(2s): 1-41.
[22] CAI G, XIA B. Convolutional neural networks for multimedia sentiment analysis; proceedings of the natural language processing and Chinese computing[C]//Natural language processing and chinese computing, Springer, Cham, 2015: 159-167.
[23] HUANG F, ZHANG X, ZHAO Z, et al. Image–text sentiment analysis via deep multimodal attentive fusion [J]. Knowledge-based systems, 2019, 167: 26-37.
[24] CHEN J, WANG C, WANG K, et al. HEU Emotion: a large-scale database for multimodal emotion recognition in the wild [J]. Neural computing and applications, 2021, 33(14): 8669-8685.
[25] HUANG Y, YANG X, GAO J, et al. Knowledge-driven egocentric multimodal activity recognition [J]. ACM trans. multimed comput. commun. appl, 2020, 16(4): 1-133.
[26] DANG-NGUYEN D-T, PIRAS L, GIACINTO G, et al. Multimodal retrieval with diversification and relevance feedback for tourist attraction images [J]. ACM trans. multimed comput. commun. appl, 2017, 13(4): 1-24.
[27] SENGUPTA S, BASAK S, SAIKIA P, et al. A review of deep learning with special emphasis on architectures, applications and recent trends [J]. Knowledge-based systems, 2020, 194: 105596.
[28] JIANG S, HU J, MAGEE C L, et al. Deep learning for technical document classification [J]. IEEE transactions on engineering management, 2024, 71: 1163-1179.
[29] FANG L, ZHANG L, WU H, et al. Patent2Vec: Multi-view representation learning on patent-graphs for patent classification [J]. World wide web, 2021, 24(5): 1791-1812.
[30] 李晴晴, 周长胜, 吕学强, 等. 基于外观设计专利的多模态图像检索 [J]. 计算机工程与设计, 2016, 37(9): 2469-2474. (LI Q Q, ZHOU C S, LV X Q, et al. Multi-moda limage retrieval based on design patent image [J]. Computer engineering and design, 2016, 37(9): 2469-2474.)
[31] PUSTU-IREN K, BRUNS G, EWERTH R. A multimodal approach for semantic patent image retrieval [C]// Proc. 2nd workshop patent text mining semantic technol. co-located 44th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr. (SIGIR), 2021: 45-49.
[32] WEI X, ZHANG T, LI Y, et al. Multi-modality cross attention network for image and sentence matching [C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Seattle: IEEE, 2020: 10941-10950.
[33] 于家畦, 康晓东, 白程程, 等. 一种新的中文电子病历文本检索模型 [J]. 计算机科学, 2022, 49(S1): 32-38. (YU J Q, KANG X D, BAI C C, et al. New text retrieval model of chinese electronic medical records [J]. Computer science, 2022, 49(S1): 32-38.)
[34] CUI Y, CHE W, LIU T, et al. Pre-training with whole word masking for Chinese BERT [J]. IEEE/ACM transactions on audio, speech, and language processing, 2021, 29: 3504-3514.
[35] THECKEDATH D, SEDAMKAR R. Detecting affect states using VGG16, ResNet50 and SE-ResNet50 networks [J]. SN computer science, 2020, 1: 1-7.
[36] CHU Y, YUE X, YU L, et al. Automatic image captioning based on ResNet50 and LSTM with soft attention [J]. Wireless communications and mobile computing, 2020, 2020: 1-7.
[37] 吕学强, 田驰, 张乐, 等. 融合多特征和注意力机制的多模态情感分析模型 [J]. 数据分析与知识发现, 2024, 8(5): 91-101. (LV X Q, TIAN C, ZHANG L, et al. Multi-modal emotion analysis model integrating multi-features and attention mechanism [J]. Data analysis and knowledge discovery, 2024, 8(5): 91-101.)
[38] LIN H, CHENG X, WU X, et al. CAT: cross attention in vision transformer[C]// Proceedings of the 2022 IEEE international conference on multimedia and expo. Taipei: IEEE, 2022, 1-6