[1] 李敬华, 王家良, 崔蒙. 中医临床文献质量评价研究现状及方法分析[J]. 中国中医药信息杂志, 2008(6): 95-98. (LI J H, WANG J L, CUI M. Current status and method analysis of quality evaluation of traditional Chinese medicine clinical literature[J]. Chinese journal of information on traditional Chinese medicine, 2008(6): 95-98.)
[2] 国务院. 国务院关于印发中医药发展战略规划纲要(2016—2030年)的通知[J]. 中华人民共和国国务院公报, 2016(8): 21-29. (State Council. Notice of the State Council on the outline of the strategic planning of traditional Chinese medicine development (2016-2030) [J]. Gazette of the State Council of the People's Republic of China, 2016(8): 21-29.)
[3] 国务院办公厅. 国务院办公厅关于完善科技成果评价机制的指导意见[J]. 中华人民共和国国务院公报, 2021(23): 22-25. (Office of the State Council. The General Office of the State Council on improving the evaluation mechanism of scientific and technological achievements[J]. Gazette of the State Council of the People's Republic of China, 2021(23): 22-25.)
[4] MOHER D, JONES A, LEPAGE L, et al. Use of the CONSORT statement and quality of reports of randomized trials[J]. JAMA, 2001, 285(15): 1992-1995.
[5] JADAD AR, MOORE RA, CARROLL D, et al. Assessing the quality of reports of randomized clinical trails: is blinding necessary[J]. Control clin trails, 1996, 17(1): 1-12.
[6] HIGGINS J P, GREEN S. Cochrane handbook for systematic reviews of interventions[M]. John Wiley, 2008.
[7] 许巍, 熊俊, 陈日新, 等. 针灸治疗帕金森病随机对照研究质量评价[J]. 中华中医药学刊, 2017, 35(3): 562-565. (XU W, XIONG J, CHEN R X, et al. Quality evaluation of randomized controlled trails on acupuncture and moxibustion treatment of Parkinson’s disease[J]. Chinese archives of traditional Chinese medicine, 2017, 35(3): 562-565.)
[8] 季雯. 近十年中医药为主治疗血尿的临床文献质量评价[D]. 沈阳: 辽宁中医药大学, 2010. (JI W. Quality evaluation of clinical literature on hematuria treated mainly by traditional Chinese medicine in the last decade[D]. Shenyang: Liaoning University of Traditional Chinese Medicine, 2010.)
[9] 王瑞平, 李斌. 随机对照临床试验CONSORT声明解读[J]. 上海医药, 2022, 43(5): 58-62. (WANG R P, LI B. Interpretation of CONSORT statements on randomized controlled clinical trail[J]. Shanghai medical & pharmaceutical journal, 2022, 43(5): 58-62.)
[10] 王辉, 黄晓林, 蒋欣宏. 科技报告文献质量评价体系构建及实证研究[J]. 湘潭大学学报(哲学社会科学版), 2021, 45(5): 188-193. (WANG H, HUANG X L, JIANG H X. Construction of and empirical study on the quality evaluation system of scientific and technical report literature[J]. Journal of Xiangtan University (philosophy and social sciences edition), 2021, 45(5): 188-193.)
[11] 胡可慧. 我国医疗人工智能相关政策实施效果的评价指标体系研究[D]. 北京: 北京中医药大学, 2020. (HU K H. Research on the evaluation indicator system for the implementation effectiveness of medical artificial intelligence related policies in China[D]. Beijing: Beijing University of Chinese Medicine, 2020.)
[12] LAFFERTY J D, MCCALLUM A K, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//International conference on machine learning. Morgan Kaufmann Publishers, 2001.
[13] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural computation, 1997, 9(8): 1735-1780.
[14] CUN Y L, BOTTOU L, BENGIO Y. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[15] BROWN T, MANN B, RYDER N, et al. Language models are few-shot leaners[C]//Proceedings of the neural information processing systems, 2020: 1877-1901.
[16] LU Y, BU L, CHEN L, et al. Extracting clinical experiences from ancient literature of traditional Chinese medicine via deep learning[J]. Journal of Sichuan University, 2022, 59(2): 109-116.
[17] PANG Y, QIN X, ZHANG Z. Specific relation attention-guided graph neural networks for joint entity and relation extraction in Chinese EMR[J]. Applied sciences-basel, 2022, 12(17): 8493.
[18] LI C, XIE D. Research on the automatic extraction method of admission record information from traditional Chinese medicine of electronic medical records[J]. Modernization of traditional Chinese medicine and materia medica-world science and technology, 2023, 25(5): 1615-1622.
[19] QIN X, XIONG J, WANG Y, et al. Integrating syndrome factor analysis and “Prescription Name-Medicine Name” similarity to mine primary medicines in traditional Chinese medicine[J]. Journal of Sichuan University, 2011, 48(1): 67-72.
[20] XIE J, FANG P, HU K, et al. Research on data extraction and cleaning methods of clinical diagnosis and treatment of modern famous veteran doctors of TCM[J]. Lishizhen medicine and materia medica research, 2017, 28(11): 2786-2788.
[21] RUAN C, WU Y, LUO G S, et al. Relation extraction for Chinese clinical records using multi-view graph learning[J]. IEEE access, 2020, 8: 215613-215622.
[22] WANG X, YANG T, GAO X, et al. Knowledge graph enhanced transformers for diagnosis generation of Chinese medicine[J]. Chinese journal of integrative medicine, 2024, 30: 267-276.
[23] HU H, CHENG C, YE Q, et al. Enhancing traditional Chinese medicine diagnostics: Integrating ontological knowledge for multi-label symptom entity classification[J]. Mathematical biosciences and engineering, 2024, 21(1): 369-391.
[24] SUN Y, ZHAO Z, WANG Z, et al. Leveraging a joint learning model to extract mixture symptom mentions from traditional Chinese medicine clinical notes[J]. Biomed research international, 2022, 2022.
[25] XIA Y, CAI J, LI Y, et al. A precision-preferred comprehensive information extraction system for clinical articles in traditional Chinese medicine[J]. International journal of intelligent systems, 2022, 37(8): 4994-5010.
[26] BAI T, GUAN H, WANG S, et al. Traditional Chinese medicine entity relation extraction based on CNN with segment attention[J]. Neural computing & applications, 2022, 34(4, SI): 2739-2748.
[27] JIN Q, ZHAO X, YANG H, et al. Image feature extraction and retrieval of the Euler number to Chinese herbal medicine based on PCNN[C]//20193RD international conference on computer graphics digital image processing. 2019, 1355(1): 12-16.
[28] MIAO J, HUANG Y, WANG Z, et al. Image recognition of traditional Chinese medicine based on deep learning[J]. Frontiers in bioengineering and biotechnology, 2023, 11: 239.
[29] BREIMAN L, FRIEDMAN J, OLSHEN R A, et al. Classification and regression trees[M]. Belmont: Wadsworth, 1984.
[30] MARON M E, KUHNS J L. On relevance probabilistic indexing and information retrieval[J]. Journal of the ACM, 1960, 7(3): 216-244.
[31] COVER T M, HART P E. Nearest neighbor pattern classification[J]. IEEE transactions on information theory, 1967, 13(1): 21-27.
[32] LAN G, HU M, LI Y, et al. Contrastive knowledge integrated graph neural networks for Chinese medical text classification[J]. Engineering applications of artificial intelligence, 2023: 122.
[33] LIANG S, SUN F, SUN H, et al. A medical text classification approach with ZEN and capsule network[J]. Journal of super computing, 2023: 4353-4377.
[34] CHEN X, LONG C, NIU Z, et al. Classification research of Chinese medicine based on latent semantic analysis and NIR[J]. Acta optica sinica, 2014, 34(9): 0930001-1-0930001-6.
[35] GU T, YAN Z, JIANG J. Classifying Chinese medicine constitution using multimodal deep-learning model[J]. Chinese journal of integrative medicine, 2024, 30(2): 163-170.
[36] LIU Z, PENG E, YAN S, et al. T-know: a knowledge graph-based question answering and information retrieval system for traditional Chinese medicine[C]//International conference on computational linguistics. 2018: 15-19.
[37] GAO R, LI C. Knowledge question-answering system based on knowledge graph of traditional Chinese medicine[C]//2020 IEEE 9th joint international information technology and artificial intelligence conference. 2020.
[38] ZOU Y, HE Y, LIU Y. Research and implementation of intelligent question answering system based on knowledge graph of traditional Chinese medicine[C]//202039th Chinese control conference. Shenyang. 2020: 4266-4272.
[39] 杨小波, 梁兆晖, 罗云坚, 等. 支持向量机算法在中医证候信息分类中的应用[J]. 世界科学技术-中医药现代化, 2007(1): 28-31. (YANG X B, LIANG Z H, LUO Y J, et al. P-SVM applications in TCM syndrome classifications[J]. Modernization of traditional Chinese medicine and materia medica-world science and technology, 2007(1): 28-31.)
[40] 邢雁辉, 崔蒙, 储戟农, 等. 基于贝叶斯分类算法的治疗中风中药组方研究[J]. 中西医结合心脑血管病杂志, 2015, 13(4): 471-474. (XING Y H, CUI M, CHU J N, et al. Analyzing the data of Chinese medicine used in disease treatment of stroke based on the Bayes analysis[J]. Chinese journal of integrative medicine on cardio-cerebrovascular disease, 2015, 13(4): 471-474.)
[41] MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]//Proceedings of the 47th annual meeting of the Association for Computational Linguistics and the 4th international joint conference on natural language processing of the AFNLP. Singapore: Association for Computational Linguistics, 2009.
[42] NGUYEN T V T, MOSCHITTI A. End-to-end relation extraction using distant supervision from external semantic repositories[C]// Association for Computational Linguistics. 2011.