INFORMATION RESEARCH

Research on Factors Influencing Susceptibility to Health Misinformation Among Social Media Users from the Configuration Perspective

  • Mo Zuying ,
  • Guo Yiming ,
  • Min Shijie ,
  • Si Chen
Expand
  • Department of Information Management, Zhengzhou University of Aeronautics, Zhengzhou 450046

Received date: 2024-04-03

  Revised date: 2024-07-25

  Online published: 2024-11-09

Supported by

This work is supported by the National Social Science Fund of China project titled “Research on Interventions for the Spread of Online Misinformation in the Context of Social Media” (Grant No. 21BTQ049).

Abstract

[Purpose/Significance] It is crucial to explore the factors and pathways that render social media users susceptible to health misinformation. This helps understand the underlying psychological mechanism of these susceptible users when facing health misinformation, thereby aiding in enhancing their ability to identify such misinformation. [Method/Process] This study collected data through an online situational experiment. Based on the MOA model and the ELM theory, it employed fuzzy-set Qualitative Comparative Analysis (fsQCA) to investigate the configuration paths influencing social media users’ susceptibility to health misinformation. [Result/Conclusion] The results indicate that three configural types of users who are susceptible to health misinformation: the health-consciousness core-driven type, the popularity- driven core type, and the dual-driven type characterized by both high health consciousness and information popularity. Among these, high health-consciousness and the reliance on information popularity-based pathways emerge as pivotal factors influencing health misinformation susceptibility.

Cite this article

Mo Zuying , Guo Yiming , Min Shijie , Si Chen . Research on Factors Influencing Susceptibility to Health Misinformation Among Social Media Users from the Configuration Perspective[J]. Library and Information Service, 2024 , 68(21) : 93 -106 . DOI: 10.13266/j.issn.0252-3116.2024.21.009

References

[1] 朱梦蝶, 付少雄, 郑德俊, 等. 文献视角下的社交媒体健康谣言研究:特征、传播与治理[J]. 图书情报知识, 2022, 39(5): 131-143. (ZHU M D, FU S X, ZHENG D J, et al. Research on social media health rumors from the perspective of literature: characteristics, dissemination and governance[J]. Documentation, information & knowledge, 2022, 39(5): 131-143.)
[2] NAN X, WANG Y, THIER K. Health Misinformation. The Routledge handbook of health communication[M]. London, New York: Routledge, 2021: 318-332.
[3] ROOZENBEEK J, SCHNEIDER C R, DRYHURST S, et al. Susceptibility to misinformation about COVID-19 around the world[J]. Royal society open science, 2020, 7(10): 201199.
[4] BUCHANAN T. Why do people spread false information online? the effects of message and viewer characteristics on self-reported likelihood of sharing social media disinformation[J]. Plos one, 2020, 15(10): 1-33.
[5] BELSKY J, BAKERMANS-KRANENBURG M J, VAN IJZENDOORN M H. For better and for worse: differential susceptibility to environmental influences[J]. Current directions in psychological science, 2007, 16(6): 300-304.
[6] 陈澍奇, 卫东乐, 张大龙. 强关系社交网络用户健康信息共享意愿研究——基于PLS-SEM及fsQCA方法[J]. 郑州大学学报(哲学社会科学版), 2024, 57(2): 47-53. (CHEN S Q, WEI D L, ZHANG D L. Research on the willingness to share health information among strong-tie social network users: based on PLS-SEM and fsQCA methods[J]. Journal of Zhengzhou University (philosophy and social sciences edition), 2024, 57(2): 47-53.)
[7] 李凤景, 袁曦临. 重大突发事件下个体主观幸福感影响因素研究——基于社会认知视角[J]. 情报探索, 2024(5): 75-86. (LI F J, YUAN X L. Research on influencing factors of individual subjective well-being in the context of major emergencies: based on social cognitive perspective[J]. Information research, 2024(5): 75-86.)
[8] XIONG F, LIU Y, ZHANG Z J, et al. An information diffusion model based on retweeting mechanism for online social media[J]. Physics letters A, 2012, 376(30-31): 2103-2108.
[9] RUBIN V L. Disinformation and misinformation triangle: a conceptual model for “fake news” epidemic, causal factors and interventions[J]. Journal of documentation, 2019, 75(5): 1013-1034.
[10] 李新月, 宋士杰, 韩文婷, 等. 失真健康信息预先干预对个体感知与行为意愿影响的实证研究[J]. 信息资源管理学报, 2024, 14(1): 44-54. (LI X Y, SONG S J, HAN W T, et al. An empirical study of the effects of a prebunking of health misinformation on individuals’ perceptions and behavioral intentions[J]. Journal of information resources management, 2024, 14(1): 44-54.)
[11] BRINGULA R P, CATACUTAN-BANGIT A E, GARCIA M B, et al. “Who is gullible to political disinformation?”: predicting susceptibility of university students to fake news[J]. Journal of information technology & politics, 2022, 19(2): 165-179.
[12] MUSUVA P M W, GETAO K W, CHEPKEN C K. A new approach to modelling the effects of cognitive processing and threat detection on phishing susceptibility[J]. Computers in human behavior, 2019, 94: 154-175.
[13] SCHERER L D, MCPHETRES J, PENNYCOOK G, et al. Who is susceptible to online health misinformation? A test of four psychosocial hypotheses[J]. Health psychology, 2021, 40(4): 274-284.
[14] KRISHNA A. Lacuna publics: advancing a typology of disinformation-susceptible publics using the motivation-attitude-knowledge framework[J]. Journal of public relations research, 2021, 33(2): 63-85.
[15] SEO H, BLOMBERG M, ALTSCHWAGER D, et al. Vulnerable populations and misinformation: a mixed-methods approach to underserved older adults’ online information assessment[J]. New media & society, 2021, 23(7): 2012-2033.
[16] JAMIESON K H, ALBARRACIN D. The relation between media consumption and misinformation at the outset of the SARS-CoV-2 pandemic in the US[J]. The Harvard Kennedy school misinformation review, 2020, 1: 1-22.
[17] 曹雅宁, 柯青. 为什么人们对虚假健康信息的易感性不同?——基于信息加工过程组态的分析[J]. 现代情报, 2023, 43(1): 40-54. (CAO Y N, KE Q. Why people show differences in their susceptibility to health misinformation?: Research based on information processing configurations[J]. Journal of modern information, 2023, 43(1): 40-54.)
[18] 葛元霄, 石晋阳. 大学生网络健康信息甄别的影响因素探究[J]. 情报探索, 2020(5): 16-23. (GE Y X, SHI J Y. Influencing factors of screening network health information for college students[J]. Information research, 2020(5): 16-23.)
[19] 宋小康, 赵宇翔, 宋士杰, 等. 基于MOA理论的健康谣言分享意愿影响因素研究[J]. 情报学报, 2020, 39(5): 511-520. (SONG X K, ZHAO Y X, SONG S J, et al. Factors influencing users intention to share online health rumors based on the moa model[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(5): 511-520.)
[20] 何艺璇, 闫文捷. 谁在社交媒体扩散虚假健康信息?——健康素养与分析性思维的作用[J]. 新闻记者, 2021, 461(7): 72-85. (HE Y X, YAN W J. Who spreads false health information on social media? The role of health literacy and analytical thinking[J]. Shanghai journalism review, 461(7): 72-85.)
[21] GREENE C M, MURPHY G. Individual differences in susceptibility to false memories for COVID-19 fake news[J]. Cognitive research: principles and implications, 2020, 5(1): 63.
[22] NURSE M S, ROSS R M, ISLER O, et al. Analytic thinking predicts accuracy ratings and willingness to share COVID-19 misinformation in Australia[J]. Memory & cognition, 2022, 50(2): 425-434.
[23] STERNISKO A, CICHOCKA A, CISLAK A, et al. National narcissism predicts the belief in and the dissemination of conspiracy theories during the COVID-19 pandemic: evidence from 56 countries[J]. Personality and social psychology bulletin, 2023, 49(1): 48-65.
[24] MOTTA M, CALLAGHAN T. The pervasiveness and policy consequences of medical folk wisdom in the US[J]. Scientific reports, 2020, 10(1): 10722.
[25] PAN W, LIU D, FANG J. An examination of factors contributing to the acceptance of online health misinformation[J]. Frontiers in psychology, 2021, 12: 630268.
[26] SU Y, LEE D K L, XIAO X. “I enjoy thinking critically, and I’m in control”: examining the influences of media literacy factors on misperceptions amidst the COVID-19 infodemic[J]. Computers in human behavior, 2022, 128: 107111.
[27] BARMAN D, CONLAN O. Exploring the links between personality traits and susceptibility to disinformation[C]//Proceedings of the 32nd ACM (Association for Computing Machinery) conference on hypertext and social media. New York: ACM, 2021: 291-294.
[28] CHEN X, SIN S C J. ‘Misinformation? what of it?’ Motivations and individual differences in misinformation sharing on social media[J]. Proceedings of the American Society for Information Science and Technology, 2013, 50(1): 1-4.
[29] 宋士杰, 赵宇翔, 宋小康, 等.互联网环境下失真健康信息可信度判断的影响因素研究[J]. 中国图书馆学报, 2019, 45(4): 72-85. (SONG S J, ZHAO Y X, SONG X K, et al. Investigating the influential factors of consumer’s credibility judgment on health misinformation[J]. Journal of library science in China, 2019, 45(4): 72-85.)
[30] 薛翔, 马海云, 赵宇翔, 等. 失真健康信息特征对社交媒体用户分享意愿影响机制研究[J]. 图书情报工作, 2024, 68(4): 70-82. (XUE X, MA H Y, ZHAO Y X, et al. Investigating the influence of health misinformation features on users’ sharing willingness in social media[J]. Library and information service, 2024, 68(4): 70-82.)
[31] DENG S, FU S, LIU Y, et al. Modelling users’ trust in online health rumors: an experiment-based study in China[J]. Information research-an international electronic journal, 2021, 26(1). DOI:10.47989/irpaper890.
[32] NAN X, WANG Y, THIER K. Why do people believe health misinformation and who is at risk? a systematic review of individual differences in susceptibility to health misinformation[J]. Social science & medicine, 2022, 314: 115398.
[33] MACINNIS D J, JAWORSKI B J. Information processing from advertisements: toward an integrative framework[J]. Journal of marketing, 1989, 53(4): 1-23.
[34] 陈则谦. MOA模型的形成、发展与核心构念[J]. 图书馆学研究, 2013, 312(13): 53-57. (CHEN Z Q. The formation, development and core constructs of MOA[J]. Research on library science, 2013, 312(13): 53-57.)
[35] 刘虹, 李煜. 学术社交网络用户知识共享意愿的影响因素研究[J]. 现代情报, 2020, 40(10): 73-83. (LIU H, LI Y. Research on influence factors of knowledge sharing intention of academic social network users[J]. Journal of modern information, 2020, 40(10): 73-83.)
[36] 彭丽徽, 蒋欣. 虚拟社区感知视角下用户知识创新行为影响因素研究[J]. 现代情报, 2023, 43(2): 86-95. (PENG L H, JIANG X. Research on the influencing factors of user knowledge innovation behavior from the perspective of sense of virtual community[J]. Journal of modern information, 2023, 43(2): 86-95.)
[37] PETTY R E, CACIOPPO J T. Source factors and the elaboration likelihood model of persuasion[J]. Advances in consumer research, 1984, 11(1): 668-672.
[38] 莫祖英, 刘欢, 盘大清. 社交媒体用户虚假信息验证行为影响模型实证研究[J]. 信息资源管理学报, 2023, 13(4): 72-83. (MO Z Y, LIU H, PAN D Q. An empirical study on the influence model of social media users’ disinformation verification behavior[J]. Journal of information resources management, 2023, 13(4): 72-83.)
[39] LI R, SUH A. Factors influencing information credibility on social media platforms: evidence from Facebook pages[J]. Procedia computer science, 2015, 72: 314-328.
[40] SINDERMANN C, COOPER A, MONTAG C. A short review on susceptibility to falling for fake political news[J]. Current opinion in psychology, 2020, 36: 44-48.
[41] FISS P C. Building better causal theories: a fuzzy set approach to typologies in organization research[J]. Academy of management journal, 2011, 54(2): 393-420.
[42] 杜运周, 贾良定. 组态视角与定性比较分析(QCA): 管理学研究的一条新道路[J]. 管理世界, 2017(6): 155-167. (DU Y Z, JIA L D. Configuration perspective and qualitative comparative analysis (QCA): a new path in management research[J]. Journal of management world, 2017(6): 155-167.)
[43] 王萍, 文晴, 初彦伯, 等. 信息疫情背景下健康谣言分享意愿影响因素研究——基于S-O-R与ELM整合模型[J]. 图书情报工作, 2023, 67(22): 114-127. (WANG P, WEN Q, CHU Y B, et al. Factors affecting users’ intention to share online health rumor in the context of infodemic: based on the integrated model of s-o-r and elm[J]. Library and information service, 2023, 67(22): 114-127.)
[44] 唐雪梅, 赖胜强. 基于焦虑视角的受众网络健康谣言转发意愿研究[J]. 情报杂志, 2023, 42(11): 135-141. (TANG X M, LAI S Q. Online users’ retransmission intention of the online health rumors: a study based on the perspective of anxiety[J]. Journal of intelligence, 2023, 42(11): 135-141.)
[45] 王巍. 网络用户对虚假社会新闻的态度及行为:基于ELM模型的实证分析[J]. 情报科学, 2021, 39(12): 126-132, 145. (WANG W. Attitudes and behaviors of internet users towards fake social news: an empirical analysis based on ELM model[J]. Information science, 2021, 39(12): 126-132, 145.)
[46] HONG H. An extension of the extended parallel process model (EPPM) in television health news: the influence of health consciousness on individual message processing and acceptance[J]. Health communication, 2011, 26(4): 343-353.
[47] DUTTA-BERGMAN M. Trusted online sources of health information: differences in demographics, health beliefs, and health-information orientation[J]. Journal of medical internet research, 2003, 5(3): e893.
[48] 孙翰宸. 老年人健康信息甄别能力影响因素研究[D]. 保定: 河北大学, 2021.(SUN H Y. The influencing factors of the elderly’s health information screening ability[D]. Baoding: Hebei University, 2021.)
[49] PENNYCOOK G, FUGELSANG J A, KOEHLER D J. Everyday consequences of analytic thinking[J]. Current directions in psychological science, 2015, 24(6): 425-432.
[50] PENNYCOOK G, RAND D G. Lazy, not biased: susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning[J]. Cognition, 2019, 188: 39-50.
[51] 陆泉, 岳雪琪, 刘婷, 等. 基于多维特征的网络健康信息可信度评估研究[J]. 信息资源管理学报, 2021, 11(3): 121-131. (LU Q, YUE X Q, LIU T, et al. Research on the credibility assessment of network health information based on multidimensional information characteristics[J]. Journal of information resources management, 2021, 11(3): 121-131.)
[52] 徐嘉徽, 李全喜, 张健. 共享服务平台信息质量对消费者信息采纳行为的影响分析与提升对策研究[J]. 情报科学, 2019, 37(5): 148-154. (XU J H, LI Q X, ZHANG J. The impact of information quality on customer information adoption behavior and information quality improvement in shared services platform[J]. Information science, 2019, 37(5): 148-154.)
[53] 赵动员. 移动社交网络信息传播机制建模与仿真研究[D]. 包头: 内蒙古科技大学, 2020. (ZHAO D Y. Information dissemination mechanism in mobile social network: model building and simulation[D]. Baotou: Inner Mongolia University of Science & Technology, 2020.)
[54] 莫祖英, 王垲烁, 赵悦名. 社交媒体用户虚假信息从众传播行为影响模型实证研究[J]. 情报资料工作, 2023, 44(1): 72-81. (MO Z Y, WANG K S, ZHAO Y M. Empirical research on the influence model of social media users’ false information conformity spreading behavior[J]. Information and documentation services, 2023, 44(1): 72-81.)
[55] 万晓榆, 万婧. 在线知识问答社区用户信息信任判断实证研究——来自眼动追踪实验的证据[J]. 图书情报工作, 2021, 65(23): 79-89. (WAN X Y, WAN J. An empirical study on user information trust judgment of online knowledge Q&A communities: based on the evidence of eye movement tracking experiments[J]. Library and information service, 2021, 65(23): 79-89.)
[56] NIEMELÄ R, EK S, ERIKSSON-BACKA K, et al. A screening tool for assessing everyday health information literacy[J]. Libri, 2012, 62(2): 125-134.
[57] NORRIS P, EPSTEIN S. An experiential thinking style: its facets and relations with objective and subjective criterion measures[J]. Journal of personality, 2011, 79(5): 1043-1080.
[58] PARK D H, LEE J, HAN I. The effect of on-line consumer reviews on consumer purchasing intention: the moderating role of involvement[J]. International journal of electronic commerce, 2007, 11(4): 125-148.
[59] DUTTA-BERGMAN M J. The impact of completeness and web use motivation on the credibility of e-health information[J]. Journal of communication, 2004, 54(2): 253-269.
[60] 刘子溪, 朱鹏. 基于详尽可能性模型的微博话题可信度影响因素研究[J]. 情报科学, 2017, 35(8): 94-100. (LIU Z X, ZHU P. The research on influence factors of microblog topic credibility based on elaboration likelihood model[J]. Information science, 2017, 35(8): 94-100.)
[61] LEDERMAN R, FAN H, SMITH S, et al. Who can you trust? Credibility assessment in online health forums[J]. Health policy and technology, 2014, 3(1): 13-25.
[62] 池毛毛, 杜运周, 王伟军. 组态视角与定性比较分析方法:图书情报学实证研究的新道路[J]. 情报学报, 2021, 40(4): 424-434. (CHI M M, DU Y Z, WANG W J. Configurational perspective and qualitative comparative analysis: the new way of empirical research in library and information science[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(4): 424-434.)
[63] WOODSIDE A G. Releasing the death-grip of null hypothesis statistical testing (p<. 05): applying complexity theory and somewhat precise outcome testing (SPOT)[J]. Journal of global scholars of marketing science, 2017, 27(1): 1-15.
[64] RAGIN C C. Configurational comparative methods: qualitative comparative analysis (QCA) and related techniques[M]. London: Sage, 2009.
[65] 赵文军, 陈荣元. 社会化媒体中的在线信息可信度评估模型研究[J]. 情报理论与实践, 2015, 38(12): 68-72. (ZHAO W J, CHEN R Y. Research on credibility evaluation model of online information in social media[J]. Information studies: theory & application, 2015, 38(12), 68-72.)
[66] 张明, 杜运周. 组织与管理研究中QCA方法的应用:定位, 策略和方向[J]. 管理学报, 2019, 16(9): 1312-1323. (ZHANG M, DU Y Z. Qualitative Comparative Analysis (QCA) in management and organization research: position, tactics, and directions[J]. Chinese journal of management, 16(9): 1312-1323.)
[67] TRABERG C S, VAN DER LINDEN S. Birds of a feather are persuaded together: perceived source credibility mediates the effect of political bias on misinformation susceptibility[J]. Personality and individual differences, 2022, 185: 111269.
Outlines

/