[1] 黄水清, 王东波. 古文信息处理研究的现状及趋势[J]. 图书情报工作, 2017, 61(12): 43-49. (HUANG S Q, WANG D B.Review and trend of researches on ancient Chinese character information processing[J]. Library and information service, 2017, 61(12): 43-49.)
[2] 邓三鸿, 胡昊天, 王昊, 等. 古文自动处理研究现状与新时代发展趋势展望[J]. 科技情报研究, 2021, 3(1): 1-20. (DENG S H, HU H T, WANG H, et al. Review of automatic processing of ancient Chinese character and prospects for its development trends in the new era[J]. Scientific information research, 2021, 3(1): 1-20.)
[3] 林立涛, 王东波. 古籍文本挖掘技术综述[J]. 科技情报研究, 2023, 5(1): 78-91. (LIN L T, WANG D B. A survey of ancient book text mining technology[J]. Scientific information research, 2023, 5(1): 78-91.)
[4] 科技日报. “荀子”大语言模型:化繁为简, 通读古今[EB/OL]. [2024-02-05]. https://digital.gmw.cn/2024-01/09/content_37079517.htm. (Science and Technology Daily. Xunzi big language model: simplifying the complex to read the past and present[EB/OL]. [2024-02-05]. https://digital.gmw.cn/2024-01/09/content_37079517.htm.).
[5] 叶鹰. 智能信息处理的基础理论探讨[J]. 情报科学, 2008(9): 1281-1285, 1291. (YE Y. A probe into the fundamental theory of intelligent information processing[J]. Information science, 2008(9): 1281-1285, 1291.)
[6] 叶鹰. 智能信息处理和智能信息分析前瞻[J]. 图书与情报, 2017(6): 70-73, 95. (YE Y. A prospect on intelligent information processing and intelligent information analysis[J]. Library & information, 2017(6): 70-73, 95.)
[7] 夏笑吟. 武汉音乐学院图书馆特色音乐古籍资源的调查与研究[J]. 黄钟(武汉音乐学院学报), 2019(3): 124-129. (XIA X Y. Investigation and research on the characteristic music ancient books resources of Wuhan Conservatory of Music Library[J]. Huangzhong (Journal of Wuhan Conservatory of Music), 2019(3): 124-129.)
[8] 夏凌翔, 黄希庭. 古籍中自立涵义的概念分析[J]. 心理学报, 2006(6): 916-923. (XIA L X, HUANG X Q. Analysis of the concept of “Zili” in ancient Chinese texts [J]. Acta psychologica sinica, 2006(6): 916-923.)
[9] 孟伟, 王希法, 马苏林, 等. 基于古籍医案文献数据的心力衰竭用药分析[J]. 中华中医药杂志, 2014, 29(3): 898-900. (MENG W, WANG X F, MA S L, et al. Analysis of heart failure medication in ancient books based on literature data[J]. China journal of traditional Chinese medicine and pharmacy, 2014, 29(3): 898-900.)
[10] 刘浏, 黄水清, 孟凯, 等. 《春秋》三传女性人物的人文计算研究[J]. 图书情报工作, 2020, 64(23): 109-123. (LIU L, HUANG S Q, MENG K, et al. Humanity computing on women in Spring and Autumn Annals and the Three Commentaries[J]. Library and information service, 2020, 64(23): 109-123.)
[11] 吴梦成, 林立涛, 胡蝶, 等. 我国古代典籍时代特征视角下的机器翻译研究[J]. 图书馆论坛, 2023: 1-11. (WU M C, LIN L T, HU D, et al. Research on machine translation from the perspective of temporal characteristics in ancient Chinese classical texts[J]. Library tribune, 2023: 1-11.)
[12] 何琳, 乔粤, 孟凯. 基于典籍的春秋社会时间序列演变分析方法初探[J]. 情报理论与实践, 2021, 44(2): 33-40. (HE L, QIAO Y, MENG K. Social changes in period Chunqiu of China:from the perspective of time-series analysis of Chinese classical book[J]. Information studies:theory & application, 2021, 44(2): 33-40.)
[13] 常博林, 万晨, 李斌, 等. 基于词和实体标注的古籍数字人文知识库的构建与应用——以《资治通鉴·周秦汉纪》为例[J]. 图书情报工作, 2021, 65(22): 134-142. (CHANG B L, WAN C, LI B, et al. The construction and application for digital humanities knowledge base of ancient books based on word and entity annotation: a case study on Zhou Qin Han Annals of Zizhitongjian[J]. Library and information service, 2021, 65(22): 134-142.)
[14] WANG J, DUAN S, FU B, et al. Evol project: a comprehensive online platform for quantitative analysis of ancient literature[J]. Humanities and social sciences communications, 2024, 11(1): 1-13.
[15] 陈凯, 朱钰. 机器学习及其相关算法综述[J]. 统计与信息论坛, 2007(5): 105-112. (CHEN K, ZHU Y. A summary of machine learning and related algorithms[J]. Journal of statistics and information, 2007(5): 105-112.)
[16] 胡越, 罗东阳, 花奎, 等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14(1): 1-19. (HU Y, LUO D Y, HUA K, et al. Overview on deep learning[J]. CAAI transactions on intelligent systems, 2019, 14(1): 1-19.)
[17] 袁悦, 王东波, 黄水清, 等. 不同词性标记集在典籍实体抽取上的差异性探究[J]. 数据分析与知识发现, 2019, 3(3): 57-65. (YUAN Y, WANG D B, HUANG S Q, et al. The comparative study of different tagging sets on entity extraction of classical books[J]. Data analysis and knowledge discovery, 2019, 3(3): 57-65.)
[18] 李娜. 基于条件随机场的方志古籍别名自动抽取模型构建[J]. 中文信息学报, 2018, 32(11): 41-48, 61. (LI N. Automatic extraction of alias in ancient local chronicles based on conditional random fields[J]. Journal of Chinese information processing, 2018, 32(11): 41-48, 61.)
[19] 陈诗, 王东波, 黄水清. 数字人文下的典籍人称代词指代消解研究[J]. 情报理论与实践, 2021, 44(10): 165-172. (CHEN S, WANG D B, HUANG S Q. Research on the resolution of personal pronoun in classical books under the digital humanism[J]. Information studies:theory & application, 2021, 44(10): 165-172.)
[20] 刘博, 杜建强, 聂斌, 等. 基于二阶HMM的中医诊断古文词性标注[J]. 计算机工程, 2017, 43(7): 211-216. (LIU B, DU J Q, NIE B, et al. Part-of-speech tagging of traditional Chinese medicine diagnosis ancient prose based on second-order HMM[J]. Computer engineering, 2017, 43(7): 211-216.)
[21] 王东波, 何琳, 黄水清. 基于支持向量机的先秦诸子典籍自动分类研究[J]. 图书情报工作, 2017, 61(12): 71-76. (WANG D B, HE L, HUANG S Q. Research of automatic classification for pre-Qin philosophers literature based on the support vector machine[J]. Library and information service, 2017, 61(12): 71-76.)
[22] 李文林, 屠强, 彭丽坤, 等. 基于关联规则分析明清古籍中疫病文献的药-症关系[J]. 时珍国医国药, 2010, 21(4): 957-959. (LI W L, TU Q, PENG L Q, et al. Research on the relationship between drugs and symptoms about epidemic febrile disease treated by doctors of Ming and Qing dynasties based on bidirectional[J]. Lishizhen medicine and materia medica research, 2010, 21(4): 957-959.)
[23] QI Y, LIU L, LI B, et al. Vector based stylistic analysis on ancient Chinese books: take the Three Commentaries on the Spring and Autumn Annals as an example[C]//ANDERSON A, GORDIN S, LI B, et al. Proceedings of the ancient language processing workshop.Varna, Bulgaria: INCOMA Ltd., 2023:117-121.
[24] 王小红, 艾伦科林, 浦江淮, 等. 人文知识发现的计算机实现——对“汉典古籍”主题建模的实证分析[J]. 自然辩证法通讯, 2018, 40(4): 50-58. (WANG X H, COLIN A, Pu J H, et al. To discover humanities knowledge by the computer: an empirical analysis of topic modeling the “Handian” ancient Chinese classics[J]. Journal of dialectics of nature, 2018, 40(4): 50-58.)
[25] 孙燕, 刘浏, 王东波. 《春秋左传正义》引书计算人文研究[J]. 图书情报工作, 2023, 67(2): 119-130. (SUN Y, LIU L, WANG D B. A computing humanities study on the citation books from Chun Qiu Zuo Zhuan Zheng Yi[J]. Library and information service, 2023, 67(2): 119-130.)
[26] 陈丽平, 李建生, 杨淑慧, 等. 基于隐结构结合Logistic回归分析探讨9323例古籍咳嗽医案证候分布[J]. 中国实验方剂学杂志, 2021, 27(14): 175-182. (CHEN L P, LI J S, YANg S H, et al. Syndrome distribution of 9323 cough cases in ancient Chinese medical books based on latent structure model and logistic regression analysis[J]. Chinese journal of experimental traditional medical formulae, 2021, 27(14): 175-182.)
[27] 杜悦, 王东波, 江川, 等. 数字人文下的典籍深度学习实体自动识别模型构建及应用研究[J]. 图书情报工作, 2021, 65(3): 100-108. (DU Y, WANG D B, JIANG C, et al. Construction and application of entity recognition model based on deep learning of classics in digital humanities[J]. Library and information service, 2021, 65(3): 100-108.)
[28] 李娜. 面向方志类古籍的多类型命名实体联合自动识别模型构建[J]. 图书馆论坛, 2021, 41(12): 113-123. (LI N. Construction of automatic recognition model of multi-type named entities for local gazetteers[J]. Library tribune, 2021, 41(12): 113-123.)
[29] 梁媛, 王东波, 黄水清. 古籍同事异文的自动发掘研究[J]. 图书情报工作, 2021, 65(9): 97-104. (LIANG Y, WANG D B, HUANG S Q. Research on automatic mining of variants expressing the same event in the ancient books[J]. Library and information service, 2021, 65(9): 97-104.)
[30] 吴梦成, 林立涛, 齐月, 等. 数字人文视域下先秦典籍植物知识挖掘与组织研究[J]. 图书情报工作, 2023, 67(12): 103-113. (WU M C, LIN L T, QI Y, et al. Plant knowledge mining and organization construction in pre-Qin classics from the perspective of digital humanities[J]. Library and information service, 2023, 67(12): 103-113.)
[31] ZHANG Y, DENG S, ZHANG Q, et al. Comparative analysis of language models for linguistic examination of ancient Chinese classics: a case study of Zuozhuan corpus[C]//2023 International conference on Asian language processing. Singapore: IEEE, 2023: 154-161.
[32] CHENG N, LI B, XIAO L, et al. Integration of automatic sentence segmentation and lexical analysis of ancient Chinese based on BiLSTM-CRF model[C]//SPRUGNOLI R, PASSAROTTI M. Proceedings of LT4HALA 2020- 1st Workshop on Language Technologies for Historical and Ancient Languages. Marseille: European Language Resources Association, 2020: 52-58.
[33] 林立涛, 王东波, 刘江峰, 等. 数字人文视域下典籍动物命名实体识别研究——以SikuBERT预训练模型为例[J]. 图书馆论坛, 2022, 42(10): 42-50. (LIN L T, WANG D B, LIU J F, et al. Animal named entity recognition in ancient Chinese classics from the perspective of digital humanities: based on SikuBERT pre-training model[J]. Library tribune, 2022, 42(10): 42-50.)
[34] 袁义国, 李斌, 冯敏萱, 等. 基于深度学习的古籍文本自动断句与标点一体化研究[J]. 图书情报工作, 2022, 66(22): 134-141. (YUAN Y G, LI B, FENG M X, et al. A joint model of automatic sentence segmentation and punctuation for ancient classical texts based on deep learning, 2022, 66(22): 134-141.)
[35] 张逸勤, 邓三鸿, 胡昊天, 等. 预训练模型视角下的跨语言典籍风格计算研究[J]. 数据分析与知识发现, 2023, 7(10): 50-62. (ZHANG Y Q, DENG S H, HU H T, et al. Identifying styles of cross-language classics with pre-trained models[J]. Data analysis and knowledge discovery, 2023, 7(10): 50-62.)
[36] ZHENG X, LI M, WAN Z, et al. Knowledge mining and graph visualization of ancient Chinese scientific and technological documents bibliographic summaries based on digital humanities[J/OL]. Library hi tech[2024-09-16]. https://doi.org/10.1108/LHT-11-2022-0538.
[37] 常博林, 袁义国, 李斌, 等. 融合部首信息的古汉语自动分词与词性标注一体化分析[J/OL]. 数据分析与知识发现[2024-09-16]. http://kns.cnki.net/kcms/detail/10.1478.G2.20240108.1326.002.html. (CHANG B L, YUAN Y G, LI B, et al. A joint model of automatic word segmentation and part-of-speech tagging for ancient classical texts based on radicals[J/OL]. Data analysis and knowledge discovery[2024-09-16]. http://kns.cnki.net/kcms/detail/10.1478.G2.20240108.1326.002.html.)
[38] 张琪, 江川, 纪有书, 等. 面向多领域先秦典籍的分词词性一体化自动标注模型构建[J]. 数据分析与知识发现, 2021, 5(3): 2-11. (ZHANG Q, JIANG C, JI Y S, et al. Unified model for word segmentation and POS tagging of multi-domain pre-Qin literature[J]. Data analysis and knowledge discovery, 2021, 5(3): 2-11.)
[39] TANG XUEMEI S Q. Classifying ancient Chinese text relations with entity information[J]. Data analysis and knowledge discovery, 2023, 8(1): 114-124.
[40] 张力元, 王军. 基于机器学习的古籍目录互著与别裁探析[J]. 中国图书馆学报, 2022, 48(2): 47-61. (ZHANG L Y, WANG J. Research on inter record and analytic record of classical bibliography based on machine learning[J]. Journal of library science in China, 2022, 48(2): 47-61.)
[41] CHENG X. Graph network representation of traditional Chinese medicine prescriptions: bridging ancient wisdom with AI model development[D]. Hong Kong: Hong Kong Baptist University, 2023.
[42] 刘睿珩, 叶霞, 岳增营. 面向自然语言处理任务的预训练模型综述[J]. 计算机应用, 2021, 41(5): 1236-1246. (LIU R H, YE X, YUE Z Y. Review of pre-trained models for natural language processing tasks[J]. Journal of computer applications, 2021, 41(5): 1236-1246.)
[43] 崔竞烽, 郑德俊, 王东波, 等. 基于深度学习模型的菊花古典诗词命名实体识别[J]. 情报理论与实践, 2020, 43(11): 150-155. (CUI J F, ZHENG D J, WANG D B, et al. Named entity recognition of chrysanthemum poetry based on deep learning models[J]. Information studies:theory & application, 2020, 43(11): 150-155.)
[44] 高瑞卿, 董启文, 方达, 等. 数字技术下《老子》文本与先秦两汉典籍的关系挖掘[J]. 情报杂志, 2021, 40(10): 99-107. (GAO R Q, DONG Q W, FANG D, et al. Research on the relationship between the text of “Laozi” and the classics of the pre-Qin and Han dynasties based on digital technologies[J]. Journal of intelligence, 2021, 40(10): 99-107.)
[45] 纪有书, 王东波, 黄水清. 基于词对齐的古汉语同义词自动抽取研究——以前四史典籍为例[J]. 数据分析与知识发现, 2021, 5(11): 135-144. (JI Y S, WANG D B, HUANG S Q. Automatically extracting ancient Chinese synonyms with word alignment: case study of Pre-Four-History corpus[J]. Data analysis and knowledge discovery, 2021, 5(11): 135-144.)
[46] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. ArXiv preprint arXiv:1810.04805, 2019.
[47] ZHOU F, WANG C, WANG J. Named entity recognition of ancient poems based on Albert-BiLSTM-MHA-CRF model[J]. Wireless communications and mobile computing, 2022, 2022(1): 6507719.
[48] YANG Z, CHEN K, CHEN J Q. Guwen-UNILM: machine translation between ancient and modern Chinese based on pre-trained models[C]//WANG L, FENG Y S, HONG Y, et al. Natural Language Processing and Chinese Computing. Cham: Springer, 2021: 116-128.
[49] 许乾坤, 王东波, 刘禹彤, 等. 基于UniLM模型的古文到现代文机器翻译词汇共享研究[J]. 情报资料工作, 2024, 45(1): 89-100. (XU Q K, WANG D B, LIU Y T, et al. Research on vocabulary sharing for machine translation from ancient Chinese to modern Chinese based on UniLM model[J]. Information and documentation services, 2024, 45(1): 89-100.)
[50] DUAN S, WANG J, YANG H, et al. Disentangling the cultural evolution of ancient China: a digital humanities perspective[J]. Humanities and social sciences communications, 2023, 10(1): 1-15.
[51] LI M, QIN Y, HUANGFU W. RoBERTa: an efficient dating method of ancient Chinese texts[C]//SU Q, XU G, YANG X Y. Chinese Lexical Semantics. Cham: Springer, 2023: 293-301.
[52] TIAN H, YANG K, LIU D, et al. Anchibert: a pre-trained model for ancient Chinese language understanding and generation[C]//2021 International joint conference on neural networks. Shenzhen: IEEE, 2021: 1-8.
[53] 南京农业大学信息管理学院. GuwenBERT: 古文预训练语言模型(古文BERT)[EB/OL]. [2024-09-20]. https://github.com/Ethan-yt/guwenbert. (School of information management of Nanjing Agricultural University. GuwenBERT: pre-trained language model for classical Chinese texts (Classical Chinese BERT) [EB/OL]. [2024-09-20]. https://github.com/Ethan-yt/guwenbert.
[54] 王东波, 刘畅, 朱子赫, 等. SikuBERT与SikuRoBERTa:面向数字人文的《四库全书》预训练模型构建及应用研究[J]. 图书馆论坛, 2022, 42(6): 31-43. (WANG D B, LIU C, ZHU Z H, et al. Construction and application of pre-training model of “Siku Quanshu” oriented to digital humanities[J]. Library tribune, 2022, 42(6): 31-43.)
[55] 南京农业大学信息管理学院GujiBERT-and-GujiGPT[EB/OL]. [2024-09-21]. https://github.com/hsc748NLP/GujiBERT-and-GujiGPT. (School of information management of Nanjing Agricultural University[EB/OL]. [2024-09-21]. https://github.com/hsc748NLP/GujiBERT-and-GujiGPT.)
[56] 孙文龙, 张逸勤, 王凡铭, 等. 面向数字人文的典籍语义词汇抽取研究——以SikuBERT预训练模型为例[J]. 图书馆论坛, 2022, 42(10): 31-41. (SUN W L, ZHANG Y Q, WANG F M, et al. Study on keyword extraction from ancient Chinese classics in the context of digital humanities: taking SikuBERT pre-training model for example[J]. Library tribune, 2022, 42(10): 31-41.)
[57] MINAEE S, MIKOLOV T, NIKZAD N, et al. Large language models: a survey[J]. ArXiv preprint arXiv:2402.06196, 2024.
[58] ZHANG Y, LI H. Can large language model comprehend ancient Chinese? A preliminary test on ACLUE[J]. ArXiv preprint arXiv:2310.09550, 2023.
[59] SI S, ZHOU S, TANG L, et al. Exploring the capabilities of ChatGPT in ancient Chinese translation and person name recognition[J]. ArXiv preprint arXiv:2312.15304, 2024.
[60] 张君冬, 杨松桦, 刘江峰, 等. AIGC赋能中医古籍活化:Huang-Di大模型的构建[J/OL]. 图书馆论坛[2024-09-16]. http://kns.cnki.net/kcms/detail/44.1306.G2.20240124.1341.002.html. (ZHANG J D, YANG S H, LIU J F, et al. AIGC empowering the revitalization of traditional Chinese medicine ancient books: a study on the construction of the Huang-Di large language model[J/OL]. Library tribune[2024-09-16]. http://kns.cnki.net/kcms/detail/44.1306.G2.20240124.1341.002.html.)
[61] CAO J, PENG D, SHI Y, et al. Translating ancient Chinese to modern Chinese at scale: a large language model-based approach[C]//Proceedings of ALT2023: ancient language translation workshop. Macau SAR: Asia-Pacific Association for Machine Translation, 2023: 61-69.
[62] WANG D B. XunziALLM[EB/OL]. (2024-02-20)[2024-02-23]. https://github.com/Xunzi-LLM-of-Chinese-classics/XunziALLM.
[63] 徐娟, 刘东华, 刘宇. 基于典籍文本挖掘的明清时期色彩知识研究[J]. 图书馆论坛, 2023, 43(3): 42-53. (XU J, LIU D H, LIU Y. A study of color knowledge in Ming and Qing dynasties based on text mining of classic works[J]. Library tribune, 2023, 43(3): 42-53.)
[64] 张建立, 李仁杰, 傅学庆, 等. 古诗词文本的空间信息解析与可视化分析[J]. 地球信息科学学报, 2014, 16(6): 890-897. (ZHANG J L, LI R J, FU X Q, et al. Spatial Information analysis and visualization analysis of the ancient poetry[J]. Journal of geo-information science, 2014, 16(6): 890-897.)
[65] 朱锁玲, 包平. 方志类古籍地名识别及系统构建[J]. 中国图书馆学报, 2011, 37(3): 118-124. (ZHU S L, BAO P. The identification and system construction of place names in local chronicles[J]. Journal of library science in China, 2011, 37(3): 118-124.)
[66] ZHAO J, WEI Y, WU B. Analysis of the social network and the evolution of the influence of ancient Chinese poets[J]. Social science computer review, 2022, 40(4): 1014-1034.
[67] 李娜, 包平. 方志类古籍中物产名与别名关系的可视化——基于社会网络分析技术视角[J]. 图书馆论坛, 2017, 37(12): 108-114. (LI N, BAO P. Visual exploration of the relationship between produce names and their alias in ancient local chronicles: from social network analysis perspective[J]. Library tribune library tribune, 2017, 37(12): 108-114.)
[68] 马创新, 陈小荷. 基于引文分析的古籍文献影响力评估[J]. 大学图书馆学报, 2016, 34(1): 16-24. (MA C X, CHEN X H. Influence assessment of ancient books based on citation analysis[J]. Journal of academic library, 2016, 34(1): 16-24.)
[69] 陈力. 数字人文视域下的古籍数字化与古典知识库建设问题[J]. 中国图书馆学报, 2022, 48(2): 36-46. (CHEN L. Digitalization of ancient books and construction of classical knowledge repository from the perspective of digital humanities[J]. Journal of library science in China, 2022, 48(2): 36-46.)
[70] 李世钰, 张向先, 沈旺, 等. 古籍数字化国内外研究现状分析与路径构建研究[J]. 现代情报, 2023, 43(11): 4-20. (LI S Y, ZHANG X X, SHEN W, et al. Research status and path construction of ancient book digitization in China and abroad[J]. Journal of modern information, 2023, 43(11): 4-20.)
[71] MIAO Y, LI L, JI Y, et al. Research on denoising method of Chinese ancient character image based on Chinese character writing standard model[J]. Scientific reports, 2022, 12(1): 19795.
[72] 卢玉琪. 藏文古籍文档图像超分辨率重建研究[D]. 兰州: 西北民族大学, 2023. (LU Y Q. Research on super-resolution reconstruction of the historical Tibetan document images[D]. Lanzhou: Northwest Minzu University, 2023.)
[73] WENJUN Z, BENPENG S, RUIQI F, et al. EA-GAN: restoration of text in ancient Chinese books based on an example attention generative adversarial network[J]. Heritage science, 2023, 11(1): 42.
[74] WU L, ZHANG C, XU M, et al. Ancient Chinese recognition method based on attention mechanism[C]//20217th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC). Beijing: IEEE, 2021: 309-313.
[75] 谢恩泽, 吴政, 倪劼. 基于Faster-RCNN的古籍图像文字检测研究[J]. 新世纪图书馆, 2022(11): 61-66. (XIE E Z, WU Z, NI J. Research on image character detection of Ancient Books based on Faster-RCNN[J]. New century library, 2022(11): 61-66.)
[76] 李嘉俊, 明灿, 郭志浩, 等. 基于预训练语言模型的古籍文本智能补全研究[J]. 数据分析与知识发现, 2024, 8(5): 59-67. (LI J J, MING C, GUO Z H, et al. Research on intelligent completion of ancient texts based on pre-trained language models[J]. Data analysis and knowledge discovery, 2024, 8(5): 59-67.)
[77] ZHANG N, WAN A, HUANG J, et al. A system design of virtual reality enabled Chinese ancient books for enhancing reading promotion and culture dissemination[C]//STREITZ N A, KONOMI S. Distributed, Ambient and Pervasive Interactions. Smart Living, Learning, Well-being and Health, Art and Creativity. Cham: Springer International Publishing, 2022: 217-231.
[78] 王东波, 陆昊翔, 彭运海, 等. 面向《方志物产》的自动断句深度学习模型构建研究[J]. 中国科技史杂志, 2022, 43(2): 192-203. (WANG D B, LU H X, PENG Y H, et al. Research on the construction of a deep learning model of automatic sentence segmentation for produce in local chronicles[J]. The Chinese journal for the history of science and technology, 2022, 43(2): 192-203.)
[79] 王倩, 王东波, 李斌, 等. 面向海量典籍文本的深度学习自动断句与标点平台构建研究[J]. 数据分析与知识发现, 2021, 5(3): 25-34. (WANG Q, WANG D B, LI B, et al. Deep learning based automatic sentence segmentation and punctuation model for massive classical Chinese literature[J]. Data analysis and knowledge discovery, 2021, 5(3): 25-34.)
[80] 刘畅, 王东波, 胡昊天, 等. 面向数字人文的融合外部特征的典籍自动分词研究——以SikuBERT预训练模型为例[J]. 图书馆论坛, 2022, 42(6): 44-54. (LIU C, WANG D B, HU H T, et al. Automatic word segmentation of classic books with external features for digital humanities: a case study of SikuBERT pre-training model[J]. Library tribune, 2022, 42(6): 44-54.)
[81] 杨涛. 中文信息处理中的自动分词方法研究[J]. 现代交际, 2019(7): 93-95. (YANG T. Research on automatic word segmentation methods in Chinese information processing[J]. Modern Communication, 2019(7): 93-95.)
[82] 王姗姗, 王东波, 黄水清, 等. 多维领域知识下的《诗经》自动分词研究[J]. 情报学报, 2018, 37(2): 183-193. (WANG S S, WANG D B, HUANG S Q, et al. Research on the automatic word segmentation of the Book of Songs under multi-dimensional domain knowledge[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(2): 183-193.)
[83] 邢付贵, 朱廷劭. 基于大规模语料库的古文词典构建及分词技术研究[J]. 中文信息学报, 2021, 35(7): 41-46. (XING F G, ZHU T S. Large scale online corpus based classical integrated Chinese dictionary construction and word segmentation[J]. Journal of Chinese information processing, 2021, 35(7): 41-46.)
[84] 黄水清, 王东波, 何琳. 以《汉学引得丛刊》为领域词表的先秦典籍自动分词探讨[J]. 图书情报工作, 2015, 59(11): 127-133. (HUANG S Q, WANG D B, HE L. Exploring of word segmentation for pre-Qin literature based on the domain glossary of Sinological Index Series[J]. Library and information service, 2015, 59(11): 127-133.)
[85] CHICHE A, YITAGESU B. Part of speech tagging: a systematic review of deep learning and machine learning approaches[J]. Journal of big data, 2022, 9(1): 10.
[86] 耿云冬, 张逸勤, 刘欢, 等. 面向数字人文的中国古代典籍词性自动标注研究——以SikuBERT预训练模型为例[J]. 图书馆论坛, 2022, 42(6): 55-63. (GENG Y D, ZHANG Y Q, LIU H, et al. Automatic part-of-speech tagging of ancient Chinese texts in the context of digital humanities: a case study on SikuBERT’s pre-trained language model[J]. Library tribune, 2022, 42(6): 55-63.)
[87] CHANG Y, ZHU P, WANG C, et al. Automatic word segmentation and part-of-speech tagging of ancient Chinese based on BERT model[C]//SPRUGNOLI R, PASSAROTTI M. Proceedings of the second Workshop on Language Technologies for Historical and Ancient Languages. Marseille: European Language Resources Association, 2022: 141-145.
[88] TANG B, LIN B, LI S. Simple tagging system with RoBERTa for ancient Chinese[C]//SPRUGNOLI R, PASSAROTTI M. Proceedings of the second Workshop on Language Technologies for Historical and Ancient Languages. Marseille: European Language Resources Association, 2022: 159-163.
[89] 汤亚芬. 先秦古汉语典籍中的人名自动识别研究[J]. 现代图书情报技术, 2013(Z1): 63-68. (TANG Y F. Research of automatically recognizing name in pre-Qin ancient Chinese classics[J]. Data analysis and knowledge discovery, 2013(Z1): 63-68.)
[90] 王东波, 高瑞卿, 沈思, 等. 面向先秦典籍的历史事件基本实体构件自动识别研究[J]. 国家图书馆学刊, 2018, 27(1): 65-77. (WANG D B, GAO R Q, SHEN S, et al. Research on automatic recognition of basic entity component of historic events for pre-Qin classics[J]. Journal of the National Library of China, 2018, 27(1): 65-77.)
[91] 孙超, 张文博. 中医古籍文本术语命名实体识别的研究进展与挑战[J]. 中华中医药杂志, 2021, 36(11): 6843-6845. (SUN C, ZHANG W B. Research progress and challenges of named entity recognition of terms in ancient Chinese medicine books[J]. China journal of traditional Chinese medicine and pharmacy, 2021, 36(11): 6843-6845.)
[92] 谢靖, 刘江峰, 王东波. 古代中国医学文献的命名实体识别研究——以Flat-lattice增强的SikuBERT预训练模型为例[J]. 图书馆论坛, 2022, 42(10): 51-60. (XIE J, LIU J F, WANG D B. Study on named entity recognition of traditional Chinese medicine classics: taking SikuBERT pre-training model enhanced by the flat-lattice transformer for example[J]. Library tribune, 2022, 42(10): 51-60.)
[93] 王东波, 高瑞卿, 沈思, 等. 基于深度学习的先秦典籍问句自动分类研究[J]. 情报学报, 2018, 37(11): 1114-1122. (WANG D B, GAO R Q, SHEN S, et al. Deep learning-based classification of pre-Qin classics questions[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(11): 1114-1122.)
[94] 胡昊天, 张逸勤, 邓三鸿, 等. 面向数字人文的《四库全书》子部自动分类研究——以SikuBERT和SikuRoBERTa预训练模型为例[J]. 图书馆论坛, 2022, 42(12): 138-148. (HU H T, ZHANG Y Q, DENG S H, et al. Automatic text classification of “Zi” part of Siku Quanshu from the perspective of digital humanities: based on SikuBERT and SikuRoBERTa pre-trained models[J]. Library tribune, 2022, 42(12): 138-148.)
[95] 秦贺然, 刘浏, 李斌, 等. 融入实体特征的典籍自动分类研究[J]. 数据分析与知识发现, 2019, 3(9): 68-76. (QIN H R, LIU L, LI B, et al. Automatic classification of ancient classics with entity features[J]. Data analysis and knowledge discovery, 2019, 3(9): 68-76.)
[96] 武帅, 杨秀璋, 何琳. 多视图融合DJ-TextRCNN的古籍文本主题推荐研究[J]. 情报学报, 2024, 43(1): 61-75. (WU S, YANG X Z, HE L. Multi-view fusion DJ-TextRCNN for the theme recommendation of ancient texts[J]. Journal of the China Society for Scientific and Technical Information, 2024, 43(1): 61-75.)
[97] 周好, 王东波, 黄水清. 古籍引书上下文自动识别研究——以注疏文献为例[J]. 情报理论与实践, 2021, 44(9): 169-175. (ZHOU H, WANG D B, HUANG S Q. Automatic recognition citation context in early Chinese literature: take the annotated literature as an example[J]. Information studies:theory & application, 2021, 44(9): 169-175.)
[98] 舒非, 丰鹂萱, 邱均平, 等. 基于我国古籍引经据典现象的引文分析研究[J]. 情报学报, 2021, 40(12): 1338-1346. (SHU F, FENG L X, QIU J P, et al. Exploring the function of citation using ancient Chinese literature[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(12): 1338-1346.)
[99] 刘浏, 齐月, 刘雏菲, 等. 计算人文下的古籍引书研究及全文本知识库的构建[J]. 情报学报, 2023, 42(12): 1498-1512. (LIU L, QI Y, LIU C F, et al. Research on ancient book citations from the perspective of computational humanities and the construction of full-text knowledge base[J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(12): 1498-1512.)
[100] 黄水清, 周好, 彭秋茹, 等. 引书的自动识别及文献计量学分析[J]. 情报学报, 2021, 40(12): 1325-1337. (HUANG S Q, ZHOU H, PENG Q R, et al. Automatic recognition and bibliometric analysis of cited books[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(12): 1325-1337.)
[101] 李亚超, 熊德意, 张民. 神经机器翻译综述[J]. 计算机学报, 2018, 41(12): 2734-2755. (LI Y C, XIONG D Y, ZHANG M. A survey of neural machine translation[J]. Chinese journal of computers, 2018, 41(12): 2734-2755.)
[102] GUO G, YANG J, LU F, et al. Towards effective ancient Chinese translation: dataset, model, and evaluation[J]. Natural language processing and Chinese computing, 2023, 14303: 416-427.
[103] 吴梦成, 林立涛, 许乾坤, 等. 融合不同语义知识的中国古代典籍机器翻译研究[J]. 情报资料工作, 2024, 45(2): 97-104. (WU M C, LIN L T, XU Q K, et al. Research on machine translation of ancient Chinese classics integrating different semantic knowledge[J]. Information and documentation services, 2024, 45(2): 97-104.)
[104] 刘浏, 王东波, 黄水清, 等. 数字人文视野下的古汉语实体歧义研究[J]. 图书与情报, 2020(5): 115-124. (LIU L, WANG D B, HUANG S Q, et al. Research on ancient Chinese entity ambiguity in digital humanities[J]. Library & information, 2020(5): 115-124.)
[105] 徐健, 何琳, 刘浏, 等. 基于标目数据的《春秋》三传人物信息组织与处理流程[J]. 图书馆论坛, 2024, 44(9): 103-110. (XU J, HE L, LIU L, et al. The person information organization and processing process of the three comments based on word heading[J]. Library tribune, 2024, 44(9): 103-110.)
[106] 张琪, 王东波, 黄水清, 等. 时间维度下的史籍全文自动重组研究——数字人文视角下的探索[J]. 图书情报知识, 2022, 39(1): 51-60+147. (ZHANG Q, WANG D B, HUANG S Q, et al. Automatic reorganization of historical records from time dimension: from the perspective of digital humanities[J]. Documentation, information & knowledge, 2022, 39(1): 51-60+147.)
[107] 马刘凤. 古籍同书异名与同名异书原因探析[J]. 图书馆理论与实践, 2013(10): 76-79. (MA L F. Exploration of the reasons for same book different names and different books same names in ancient texts[J]. Library theory and practice, 2013(10): 76-79.)
[108] 黄水清, 刘浏, 王东波. 计算人文学科的内涵、体系及机遇[J]. 图书与情报, 2023(1): 1-11, 145, 153. (HUANG S Q, LIU L, WANG D B. The connotation, system and opportunity of computational humanities[J]. Library & information, 2023(1): 1-11, 145, 153.)
[109] WANG L, WANG J, TONG W. Using ontology to organize Chinese ancient books in the digital age[J]. Proceedings of the Association for Information Science and Technology, 2023, 60(1): 712-716.
[110] 许乾坤, 王东波, 刘禹彤, 等. 面向知识服务的古籍知识库构建研究[J/OL]. 情报科学[2024-09-16]. http://kns.cnki.net/kcms/detail/22.1264.G2.20240129.0947.014.html. (XU Q K, WANG D B, LIU Y T, et al. The construction of digital knowledge base of ancient books oriented to knowledge service[J]. Information science[2024-09-16]. http://kns.cnki.net/kcms/detail/22.1264.G2.20240129.0947.014.html.)
[111] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600. (LIU Q, LI Y, DUAN H, et al. Knowledge graph construction techniques[J]. Journal of computer research and development, 2016, 53(3): 582-600.)
[112] 欧阳剑, 梁珠芳, 任树怀. 大规模中国历代存世典籍知识图谱构建研究[J]. 图书情报工作, 2021, 65(5): 126-135. (OU Y J, LIANG Z F, REN S H. Research on the construction of knowledge graph of large-scale Chinese ancient books[J]. Library and information service, 2021, 65(5): 126-135.)
[113] ZHOU Y, QI X, HUANG Y, et al. Research on construction and application of TCM knowledge graph based on ancient Chinese texts[C]//IEEE/WIC/ACM international conference on Web intelligence - companion volume. New York: Association for Computing Machinery, 2019: 144-147.
[114] 刘欢, 刘浏, 王东波. 数字人文视角下的领域知识图谱自动问答研究[J]. 科技情报研究, 2022, 4(1): 46-59. (LIU H, LIU L, WANG D B. Research on automatic question answering of domain knowledge graph from the perspective of digital humanities[J]. Scientific information research, 2022, 4(1): 46-59.)
[115] 张卫, 王昊, 王东波, 等. 以数据关联促文学认知:古诗隐喻文化图式的语义组织方法[J]. 图书情报工作, 2024, 68(4): 109-123. (ZHANG W, WANG H, WANG D B, et al. Data association for literary cognition:a semantic organization approach to the metaphorical cultural schema of classical Chinese poetry[J]. Library and information service, 2024, 68(4): 109-123.)
[116] 徐润华, 王东波, 刘欢, 等. 面向古籍数字人文的《资治通鉴》自动摘要研究——以SikuBERT预训练模型为例[J]. 图书馆论坛, 2022, 42(12): 129-137. (XU R H, WANG D B, LIU H, et al. Automatic summarization of ZiZhi TongJian from the perspective of digital humanities based on ancient Chinese books: a case of SikuBERT pre-training model[J]. Library tribune, 2022, 42(12): 129-137.)
[117] 王东波, 黄水清, 何琳. 基于多特征知识的先秦典籍词性自动标注研究[J]. 图书情报工作, 2017, 61(12): 64-70. (WANG D B, HUANG S Q, HE L. Researches of automatic part-of-speech tagging for pre-Qin literature based on multi-feature knowledge[J]. Library and information service, 2017, 61(12): 64-70.)
[118] 何琳, 陈雅玲, 孙珂迪. 面向先秦典籍的知识本体构建技术研究[J]. 图书情报工作, 2020, 64(7): 13-19. (HE L, CHEN Y L, SUN K D. Research on ontology building methods of Chinese ancient books[J]. Library and information service, 2020, 64(7): 13-19.)
[119] 梁继文, 江川, 王东波. 基于多特征融合的先秦典籍汉英句子对齐研究[J]. 数据分析与知识发现, 2020, 4(9): 123-132. (LIANG J W, JIANG C, WANG D B. Chinese-English sentence alignment of ancient literature based on multi-feature fusion[J]. Data analysis and knowledge discovery, 2020, 4(9): 123-132.)
[120] 张琪, 王东波, 黄水清, 等. 史书多维知识重组与可视化研究——以《史记》为对象[J]. 情报学报, 2022, 41(2): 130-141. (ZHANG Q, WANG D B, HUANG S Q, et al. Multi-dimensional knowledge reorganization and visualization of history books: based on records of the Grand Historian[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(2): 130-141.)
[121] 郑童哲恒, 李斌, 冯敏萱, 等. 历史典籍的结构化探索——《史记·列传》数字人文知识库的构建与可视化研究[J]. 大数据, 2022, 8(6): 40-55. (ZHENG T Z H, LI B, FENG M X, et al. Explore the structuration of historical books: the construction and quantitative analysis of digital humanities database of the Biographies of the Shiji[J]. Big data research, 2022, 8(6): 40-55.)
[122] 范彦晓, 赵燕强, 李良群, 等. 古籍中灵芝美容养颜功效的民族植物学考证[J]. 时珍国医国药, 2019, 30(9): 2220-2222. (FAN Y X, ZHAO Y Q, LI L Q, et al. Ethnobotanical evidence of the beauty and anti-aging effects of Lingzhi in ancient Chinese texts[J]. Lishizhen medicine and materia medica research, 2019, 30(9): 2220-2222.)