[1] LAZER D, PENTLAND A, WATTS D, et al. Computational social science: obstacles and opportunities [J]. Science, 2020, 369(6507): 1060-1062.
[2] 吴利俊, 侯鑫鑫, 张嵬. 多要素融合视域下的高校合作贡献度指数构建及实证研究[J]. 图书情报工作, 2024, 68(7): 113-122. (WU L J, HOU X X, ZHANG W. Construction and empirical research on the university cooperation contribution index from the perspective of multi-factor integration [J]. Library and information service, 2024, 68(7): 113-122.)
[3] FONTANAROSA P, BAUCHNER H, FLANAGIN A. Authorship and team science [J]. Jama-journal of the American Medical Association, 2017, 318(24): 2433-2437.
[4] LEDFORD H. Team science [J]. Nature, 2015, 525(7569): 308-311.
[5] 魏雅慧, 张琳, 黄颖. 合著关系与研究主题双重视角下的师承合作模式研究[J]. 图书情报工作, 2024, 68(6): 30-47. (WEI Y H, ZHANG L, HUANG Y. Research on the mentorship collaboration patterns from the dual perspectives of co-authorship relationships and research themes[J]. Library and information service, 2024, 68(6): 30-47.)
[6] FONTANA M, IORI M, MONTOBBIO F et al. New and atypicalcombinations: an assessment of novelty and interdisciplinarity [J]. Research policy, 2020, 49(7): 104063.
[7] VASILYEVA E, KOZLOV A, ALFARO-BITTNER K, et al. Multilayer representation of collaboration networks with higherorder interactions [J]. Scientific reports, 2021, 11(1): 5666.
[8] YANG Y, TIAN T Y, WOODRUFF T K, et al. Gender-diverse teams produce more novel and higher-impact scientific ideas [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(36): e2200841119.
[9] LIU M, JAISWAL A, BU Y, et al. Team formation and team impact: the balance between team freshness and repeat collaboration [J]. Journal of informetrics, 2022, 16(4): 101337.
[10] SUN Y, LIVAN G, MA A, et al. Interdisciplinary researchers attain better long-term funding performance [J]. Communications physics, 2021, 4(1): 263.
[11] JONES B, WUCHTY S, UZZI B. Multi-university research teams: shifting impact, geography, and stratification in science [J]. Science, 2008, 322(5905): 1259-1262.
[12] PARISI G. Balance research funds across Europe [J]. Nature, 2016, 530(7588): 33-34.
[13] ZHOU J, ZENG A, FAN Y, et al. Identifying important scholars via directed scientific collaboration networks [J]. Scientometrics, 2018, 114(3): 1327-1343.
[14] WAGNER C, WHETSELL T, MUKHERJEE S. International research collaboration: novelty, conventionality, and atypicality in knowledge recombination [J]. Research policy, 2019, 48(5): 1260-1270.
[15] 唐旭丽, 李信. 科研团队多样性对学术颠覆性创新的影响研究——以人工智能领域为例[J]. 情报学报, 2023, 42(1): 43-58. (TANG X L, LI X. Effect of the diversity of scientific teams on disruptive innovation in academia: a case study in the field of artificial intelligence [J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(1): 43-58.)
[16] 吕冬晴, 阮选敏, 李江, 等. 跨学科知识融合对D指数的影响[J]. 情报学报, 2022, 41(3): 263-274. (LYU D Q, RUAN X M, LI J, et al. Research on the relationship between the interdisciplinarity and radicalness of papers from the perspective of knowledge integration [J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(3): 263-274.)
[17] FRONCZAK A, MROWINSKI M, FRONCZAK P. Scientific success from the perspective of the strength of weak ties [J]. Scientific reports, 2022, 12(1): 5074.
[18] PERIANES-RODRÍGUEZ A, OLMEDA-GÓMEZ C, MOYAANEGÓN F. Detecting, identifying and visualizing research groups in co-authorship networks [J]. Scientometrics, 2010, 82(2): 307-319.
[19] LI E, LIAO C, YEN H. Co-authorship networks and research impact: a social capital perspective [J]. Research policy, 2013, 42(9): 1515-1530.
[20] MARTIN-ALCAZAR F, RUIZ-MARTINEZ M, SANCHEZGARDEY G. Assessing social capital in academic research teams: a measurement instrument proposal [J]. Scientometrics, 2019, 121(2): 917-935.
[21] 吴柯烨, 孙建军, 谢紫悦. 基于专利文本挖掘的细粒度技术机会分析[J]. 情报学报, 2023, 42(10): 1199-1212. (WU K Y, SUN J J, XIE Z Y. Research on fine-grained technology opportunity analysis based on patent text mining [J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(10): 1199-1212.)
[22] 张金年, 罗艳. 基于内容的作者研究相似度与潜在合作网络分析——以图书馆学期刊为例[J]. 情报科学, 2021, 39(8): 86-93. (ZHANG J N, LUO Y. Content-based author research similarity and potential collaboration network analysis: taking library science journals as an example [J]. Information science, 2021, 39(8): 86-93.)
[23] PAUL A, DUTTA A. Community detection using local group assimilation [J]. Expert systems with applications, 2022, 206(Nov.): 117794.
[24] HU Z, LIN A, WILLETT P. Identification of researchcommunities in cited and uncited publications using a coauthorship network [J]. Scientometrics, 2019, 118(1): 1-19.
[25] CAI B, ZENG L, WANG Y, et al. Community detection method based on node density, degree centrality, and k-means clustering incomplex network [J]. Entropy, 2019, 21(12): 1145.
[26] CARUSI C, BIANCHI G. Scientificcommunity detection via bipartite scholar/journal graph co-clustering [J]. Journal of informetrics, 2019, 13(1): 354-386.
[27] HAN H, ZHAI X, HAN J, et al. Discovering research teams from scientific papers and patents[C]//Proceedings of the 3rd international conference oncomputer science and application engineering. New York: ACM, 2019: 1-5.
[28] 张靖雯, 闵超. 引文扩散视角下论文学术影响力和社会影响力比较研究——以生物医学为例[J]. 情报学报, 2023, 42(1): 31-42. (ZHANG J W, MIN C.Acomparative study of the academic and social impact of papers from the diffusion perspective: taking biomedicine as an example [J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(1): 31-42.)
[29] DING Y, CRONIN B. Popular and/or prestigious? measures of scholarly esteem [J]. Information processing & management, 2011, 47(1): 80-96.
[30] YIN Y, WANG Y, EVANS J A, et al. Quantifying the dynamics of failure across science, startups and security [J]. Nature, 2019, 575(7781): 190-194.
[31] MA A, MONDRAGÓN R J, LATORA V. Anatomy of funded research in science [J]. Proceedings of the National Academy of Sciences, 2015, 112(48): 14760-14765.
[32] YIN Y, GAO J, JONES B F, et al. Coevolution of policy and science during the pandemic [J]. Science, 2021, 371(6525): 128-130.
[33] WALTMAN L. A review of the literature on citation impact indicators [J]. Journal of informetrics, 2016, 10(2): 365-391.
[34] KUHN T. Historical structure of scientific discovery [J]. Science, 1962, 136(3518): 760-764.
[35] MIN C, BU Y, WU D, et al. Identifying citation patterns of scientific breakthroughs: a perspective of dynamic citation process [J]. Information processing & management, 2021, 58(1): 102428.
[36] 韩毅, 伍玉, 申东阳, 等. 中文科研论文未被引探索Ⅰ: 外部特征影响研究——以图书馆情报与文献学为例[J]. 图书情报工作, 2018, 62(4): 6-13. (HAN Y, WU Y, SHEN D Y, et al. PartⅠ of the exploration on uncited papers in Chinese: the influences of external features of papers: a case study of library and information science [J]. Library and information service, 2018, 62(4): 6-13.)
[37] BRITO R, NAVARRO A. The inconsistency of h -index: a mathematical analysis [J]. Journal of informetrics, 2021, 15(1): 101106.
[38] FONTANAROSA P, BAUCHNER H, FLANAGIN A. Authorship and team science [J]. JAMA, 2017, 318(24): 2433-2437.
[39] HEIDI L. Team science [J]. Nature, 2015, 525(7569): 308-311.
[40] MOHAMMED S, MORGAN A, NYANTAKYI E. On the influence of uncited publications on a researcher’s h-index [J]. Scientometrics, 2020, 122(3): 1791-1799.
[41] YIN Y, WANG Y, EVANS J A, et al. Quantifying the dynamics of failure across science, startups and security [J]. Nature, 2019, 575(7781): 190-194.
[42] SINATRA R, WANG D, DEVILLE P, et al. Quantifying the evolution of individual scientific impact [J]. Science, 2016, 354(6312): aaf5239.
[43] HICKS D, WOUTERS P, WALTMAN L, et al. The Leiden Manifesto for research metrics [J]. Nature, 2015, 520(7548): 429-431.
[44] WAY S, MORGAN A, LARREMORE D, Larremore D, et al. Productivity, prominence, and the effects of academic environment [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(22): 10729-10733.
[45] CHU J, EVANS J. Slowed canonical progress in large fields of science [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(41): e2021636118.
[46] ALSTOTT J, BULLMORE E T, PLENZ D. Powerlaw: a python package for analysis of heavy-tailed distributions [J]. Plos one, 2014, 9(1): e85777.
[47] MERTON R. The Matthew effect in science. The reward andcommunication systems of science are considered [J]. Science, 1968, 159(3810): 56-63.
[48] ZHAI L, YAN X, ZHANG G. Bi-directional h-index: a new measure of node centrality in weighted and directed networks [J]. Journal of informetrics, 2018, 12(1): 299-314.
[49] BORNMANN L, TEKLES A. Convergent validity of several indicators measuring disruptiveness withmilestone assignments to physics papers by experts [J]. Journal of informetrics, 2021, 15(3): 101159.
[50] WANG R, ZHOU Y, ZENG A. Evaluating scientists by citation and disruption of their representative works [J]. Scientometrics, 2023, 128(3): 1689-1710.
[51] XU S, MARIANI M S, LU L, et al. Unbiased evaluation of ranking metrics reveals consistent performance in science and technology citation data [J]. Journal of informetrics, 2020, 14(1): 101005.