[1] 马费成, 张帅. 我国图书情报领域新兴交叉学科发展探析[J]. 中国图书馆学报, 2023, 49(2): 4-14. (MA F C, ZHANG S. The development of emerging interdisciplines in library and information science in China[J]. Journal of library science in China, 2023, 49(2): 4-14.)
[2] 张新猛, 刘江鹏, 范亚茹, 等. 产业链视角下专利新兴技术主题识别[J]. 情报杂志, 2023, 42(8): 96-101, 55. (ZHANG X M, LIU J P, FAN Y R, et al. Identification emerging technology topics of patent from the perspective of industry chain[J]. Journal of intelligence, 2023, 42(8): 96-101, 55.)
[3] 曹树金, 曹茹烨. 基于研究主题和引文分析的信息资源管理学科发展探究[J]. 信息资源管理学报, 2023, 13(2): 12-29. (CAO S J, CAO R Y. Research on the development of the firstlevel discipline of information resource management based on research theme and citation analysis[J]. Journal of information resources management, 2023, 13(2): 12-29.)
[4] 张金柱, 于文倩. 基于短语表示学习的主题识别及其表征词抽取方法研究[J]. 数据分析与知识发现, 2021, 5(2): 50-60. (ZHANG J Z, YU W Q. Topic recognition and key-phrase extraction with phrase representation learning[J]. Data analysis and knowledge discovery, 2021, 5(2): 50-60.)
[5] HUANG L, CHEN X, NI X, et al. Tracking the dynamics of coword networks for emerging topic identification[J]. Technological forecasting and social change, 2021, 170: 120944.
[6] 陈琼, 朱庆华, 闵华, 等. 基于领域主题的学科交叉特征识别方法研究——以医学信息学为例[J]. 现代情报, 2022, 42(4): 11-24. (CHEN Q, ZHU Q H, MIN H, et al. Research on method of recognizing interdisciplinary features based on domain topics: taking medical informatics for example[J]. Journal of modern information, 2022, 42(4): 11-24.)
[7] 王曰芬, 刘佳宁, 王柳虹, 等. 高质量发展背景下科技新闻主题识别及其热点演化分析[J]. 情报理论与实践, 2023, 46(5): 107-116. (WANG Y F, LIU J N, WANG L H, et al. Topic identification and hotspot evolution analysis of sci-tech news in the context of high-quality development[J]. Information studies: theory & application, 2023, 46(5): 107-116.)
[8] 张霁阳, 张鹏, 兰月新, 等. 基于动态主题聚类的网络舆情反转识别模型构建与实证研究[J]. 情报理论与实践, 2023, 46(10): 174-181, 129. (ZHANG J Y, ZHANG P, LAN Y X, et al. Construction and empirical study of online public opinion inversion identification model based on dynamic topic clustering[J]. Information studies: theory & application, 2023, 46(10): 174-181, 129.)
[9] CHEN H, WANG X, PAN S, et al. Identify topic relations in scientific literature using topic modeling[J]. IEEE transactions on engineering management, 2019, 68(5): 1232-1244.
[10] 解学梅, 于平. 女性创业者性别刻板印象研究热点分析与演化路径: 基于知识图谱的研究[J]. 管理评论, 2022, 34(10): 108-121. (XIE X M, YU P. Hot spot and evolution path of female entrepreneurs’ gender stereotypes: research based on mapping knowledge domain[J]. Management review, 2022, 34(10): 108-121.)
[11] 张汝昊, 袁军鹏. 融合引用语义和语境特征的作者引文耦合分 析法 [J]. 情报 学报, 2022, 41(8): 796-811. (ZHANG R H, YUAN J P. Semantic-and contextual-based author bibliographic coupling analysis[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(8): 796-811.)
[12] 张久珍, 崔汭. 基于引文内容分析法的刘国钧《近代图书馆之性质及功用》影响研究[J]. 图书情报工作, 2022, 66(20): 93-100. (ZHANG J Z, CUI R. Influences of Liu Kwoh-chuin’s Libraries’ Properties and Functions in Modern Time based on citation content analysis[J]. Library and information service, 2022, 66(20): 93-100.)
[13] 高楠, 高嘉骐, 陈洪璞. 新兴技术识别与演化路径分析方法研究 ——以集成电路领域为例[J]. 情报科学, 2023, 41(3): 127-135, 172. (GAO N, GAO J Q, CHEN H P. Emerging technology identification method and evolution path: take the field of integrated circuits as an example[J]. Information science, 2023, 41(3): 127-135, 172.)
[14] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3(3): 993-1022.
[15] 邱均平, 胡博, 徐中阳, 等. 基于DTM模型的国内外话语权研究主题挖掘及比较分析[J]. 情报理论与实践, 2023, 46(2): 24-34. (QIU J P, HU B, XU Z Y, et al. Topic mining andcomparative analysis of discourse power research in China and overseas based on DTM model[J]. Information studies: theory & application, 2023, 46(2): 24-34.)
[16] 韩亚楠, 刘建伟, 罗雄麟. 概率主题模型综述[J]. 计算机学报, 2021, 44(6): 1095-1139. (HAN Y N, LIU J W, LUO X L. A survey on probabilistic topic model[J]. Chinese journal ofcomputers, 2021, 44(6): 1095-1139.)
[17] GROOTENDORST M. BERTopic: neural topic modeling with a class-based TF-IDF procedure[J]. arXiv preprint arXiv:2203.05794, 2022.
[18] 姚茹, 乌吉斯古楞, 张学福. 基于知识流的研究前沿主题演化分析方法研究——以“ 基因组编辑技术及其在农作物中的应用” 研究前沿为例[J]. 情报理论与实践, 2023, 46(8): 165-174. (YAO R, GULENG W J S, ZHANG X F. Research on the evolution analysis method of research frontier topics based on knowledge flow: a case study of “genome editing technology and its application in crops”[J]. Information studies: theory & application, 2023, 46(8): 165-174.)
[19] 吕璐成, 周健, 王学昭, 等. 基于双层主题模型的技术演化分析框架及其应用[J]. 数据分析与知识发现, 2022, 6(Z1): 18-32. (LV L C, ZHOU J, WANG X Z, et al. Technology evolution analysis framework based on two-layer topic model and application[J]. Data analysis and knowledge discovery, 2022, 6(Z1): 18-32.)
[20] 张柳, 王慧, 相甍甍. 基于LDA的突发事件应急管理主题热度与演化分析[J]. 情报科学, 2023, 41(6): 182-191. (ZHANG L, WANG H, XIANG M M. Analysis on the topic popularity and evolution of emergency management based on LDA[J]. Information science, 2023, 41(6): 182-191.)
[21] 马建红, 王晨曦, 闫林, 等. 基于产品生命周期的专利技术主题演化分析[J]. 情报学报, 2022, 41(7): 684-691. (MA J H, WANG C X, YAN L, et al. Analysis of patent technology topic evolution based on product life cycle[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(7): 684-691.)
[22] 刘春江, 刘自强, 方曙. 基于SAO的技术主题创新演化路径识别及其可视化研究[J]. 情报学报, 2023, 42(2): 164-175. (LIU C J, LIU Z Q, FANG S. Evolution path identification and visualization of technological innovation based on SAO[J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(2): 164-175.)
[23] 马晓悦, 孙铭菲. 融合热点事件主题演化的民族文化扩散研究 [J]. 图书情报工作, 2022, 66(3): 106-117. (MA X Y, SUN M F. Research on the diffusion of national culture integrating the theme evolution of hot topics[J]. Library and information service, 2022, 66(3): 106-117.)
[24] 郭宇, 张传洋, 张海涛, 等. 危机管理视角下突发事件舆情主题演化与治理分析[J]. 图书情报工作, 2022, 66(8): 113-121. (GUO Y, ZHANG C Y, ZHANG H T, et al. Analysis on the topic evolution and governance of public opinion in emergencies from the perspective of crisis management[J]. Library and information service, 2022, 66(8): 113-121.)
[25] 王正成, 袁竹星. 面向主题的微博意见领袖挖掘研究[J]. 情报科学, 2018, 36(3): 112-116. (WANG Z C, YUAN Z X. Research on the theme-oriented mining of microblog opinion leaders[J]. Information science, 2018, 36(3): 112-116.)
[26] 邢晓昭, 任亮, 雷孝平, 等. 基于专利主题演化的颠覆性技术识别研究——以类脑智能领域为例[J]. 情报科学, 2023, 41(3): 81-88. (XING X Z, REN L, LEI X P, et al. The identification of disruptive technology based on patent theme evolution: taking the field of brain-inspired intelligence as an example[J]. Information science, 2023, 41(3): 81-88.)
[27] 崔旭, 杨煜, 李姗姗. 基于LDA模型的我国档案馆非物质文化遗产保护主题挖掘与演化分析——与非遗保护中心对比视角[J]. 图书情报工作, 2022, 66(23): 82-92. (CUI X, YANG Y, LI S S. Topic mining and evolution analysis of intangible cultural heritage protection in chinese archives based on LDA modelcomparison with intangible cultural heritage protection center[J]. Library and information service, 2022, 66(23): 82-92.)
[28] REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using Siamese BERT-networks[J]. arXiv preprint arXiv:1908.10084, 2019.
[29] 易灿灿, 庹帅, 涂闪, 等. 基于UMAP辅助的模糊C聚类方法进行太赫兹光谱识别[J]. 光谱学与光谱分析, 2022, 42(9): 2694-2701. (YI C C, TUO S, TU S, ZHANG W T. UMAPassisted fuzzy c-clustering method for recognition of terahertz spectrum[J]. Spectroscopy and spectral analysis, 2022, 42(9): 2694-2701.)
[30] WANG D, HUANG Y, CAI Z. A two-phase clustering approach for traffic accident black spots identification: integrated GISbased processing and HDBSCAN model[J]. International journal of injury control and safety promotion, 2023, 30(2): 270-281.
[31] EL-KISHKY A, SONG Y, WANG C, et al. Sc al abl e topical phrase mining from text corpora[J]. arXiv preprint arXiv:1406.6312, 2014.
[32] 赵琪. 基于深度学习的文本语义相似度研究[D]. 北京: 中国人民公安大学, 2021. (ZHAO Q. Research on text semantic similarity based on deep learning[D]. Beijing: People’s Public Security University of China, 2021.)
[33] PALLA G, BARABÁSI A L, VICSEK T. Quantifying social group evolution[J]. Nature, 2007, 446(7136): 664-667.
[34] 李慧, 胡吉霞, 佟志颖. 面向多源数据的学科主题挖掘与演化分析[J]. 数据分析与知识发现, 2022, 6(7): 44-55. (LI H, HU J X, TONG Z Y. Subject topic mining and evolution analysis with multi-source data[J]. Data analysis and knowledge discovery, 2022, 6(7): 44-55.)
[35] 李娟, 崔冉, 王伟. 第三方物流企业主导供应链金融价值创造机制探析[J]. 财会月刊, 2023, 44(21): 117-123. (LI J, CUI R, WANG W. Analysis on the value creation mechanism of third party logistics enterprise leading supply chain finance[J]. Finance and accounting monthly, 2023, 44(21): 117-123.)
[36] 祝由, 贾冉, 王纲金, 等. 供应链金融风险评估研究综述——基于知识图谱技术[J]. 系统工程理论与实践, 2023, 43(3): 795-812. (ZHU Y, JIA R, WANG G J, et al. A review of supply chain finance risk assessment research: based on knowledge graph technology[J]. Systems engineering-theory & practice, 2023, 43(3): 795-812.)
[37] XU X H, CHEN X F, JIA F, et al. Supply chain finance a systematic literature reviiew and bibliometric analysis[J]. International journal of production economics, 2018, 204: 160-173.
[38] CHAKUU S, MASI D, GODSELL J. Exploring the relationship between mechanisms, actors and instruments in supply chain finance: a systematic literature review[J]. International journal of production economics, 2019, 216: 35-53.
[39] 关鹏, 王曰芬, 傅柱. 不同语料下基于LDA主题模型的科学文献主题抽取效果分析[J]. 图书情报工作, 2016, 60(2): 112-121. (GUAN P, WANG Y F, FU Z. Effect analysis of scientific literature topic extraction based on LDA topic model with different corpus[J]. Library and information service, 2016, 60(2): 112-121.)
[40] 柴正猛, 黄轩. 供应链金融风险管理研究综述[J]. 管理现代化, 2020, 40(2): 109-115. (CHAI Z M, HUANG X. Review of supply chain financial risk management[J]. Modernization of management, 2020, 40(2): 109-115.)
[41] 徐杨杨, 雷全胜. 供应链金融综述[J]. 广西科学, 2021, 28(6): 547-556. (XU Y Y, LEI Q S. Review on supply chain finance[J]. Guangxi sciences, 2021, 28(6): 547-556.)
[42] CHOD J, TRICHAKIS N, TSOUKALAS G, et al. On the financing benefits of supply chain transparency and blockchain adoption[J]. Management science, 2020, 66(10): 4378-4396.
[43] CHEN J, CAI T, HE W, et al. A blockchain-driven supply chain finance application for auto retail industry[J]. Entropy, 2020, 22(1): 95-111.
[44] 陆岷峰, 徐阳洋. “ 双碳” 目标背景下供应链经济的新特点、 新挑战与新对策[J]. 新疆社会科学, 2022(1): 38-46, 146. (LU M F, XU Y Y. New features, challenges and countermeasures of supply chain economy in the context of “double carbon” target[J]. Social sciences in Xinjiang, 2022(1): 38-46, 146.)
[45] 滕婕, 刘莉, 李硕, 等. 动态语义网的高价值热点主题识别与演化路径分析[J]. 图书情报工作, 2023, 67(7): 92-106. (TENG J, LIU L, LI S, et al. High-value hot topic identification and evolutionary path analysis based on dynamic semantic network[J]. Library and information service, 2023, 67(7): 92-106.)
[46] 李晓青, 郑小妮, 刘金豪. 可持续供应链金融如何影响中小企业融资绩效——基于环境规制视角[J]. 金融监管研究, 2020(3): 70-84. (LI X Q, ZHENG X N, LIU J H. How does sustainable supply chain finance affect the financing performance of SEMs: from the perspective of environmental regulation[J]. Financial regulation research, 2020(3): 70-84.)
[47] 蒋伯亨, 温涛. 农业供应链金融(ASCF)研究进展[J]. 农业经 济问 题, 2021(2): 84-97. (JIANG B H, WEN T. Research progress on agricultural supply chain finance(ASCF)[J]. Issues in agricultural economy, 2021(2): 84-97.)
[48] 薛小飞. 商业银行绿色供应链金融的实践思考: 模式、问题及对策[J]. 新金融, 2022, 398(3): 41-47. (XUE X F. Thinking on the practice of green supply chain finance ofcommercial banks: modes, problems and countermeasures[J]. New finance, 2022, 398(3): 41-47.)